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Abstract

Aging is influenced by many lifestyle choices that are under

human control, including nutrition and exercise. The most

effective known antiaging intervention consists of calorie

restriction (CR), which increases lifespan in yeasts, worms,

fruit flies, mice, and nonhuman primates. CR also improves

healthspan by preventing the development of various aging‐
related diseases such as cancer, cardiovascular disease,

diabetes, and neurodegeneration. Many compounds isolated

from plants and fungi prolong lifespan and prevent age‐
related diseases in model organisms. These plant and fungal

compounds modulate the same cellular and physiological

pathways as CR, including those involving insulin and

insulin‐like growth factor‐1, mammalian target of rapamycin,

and sirtuins. Modulation of these aging‐related pathways

results in the activation of various cellular processes such as

autophagy, DNA repair, and neutralization of reactive

oxygen species. Together, these cellular processes are

believed to delay aging and prevent chronic diseases by

improving bodily functions and stress resistance. We review

here the mechanisms of action of plant and fungal molecules

possessing antiaging properties and discuss the possibilities

and challenges associated with the development of antiaging

compounds isolated from natural products.
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1 | INTRODUCTION

Aging is an inevitable process attributed to molecular and cellular damage that leads to a gradual loss of organ

function and ultimately death. Aging and longevity are modulated by various factors that include lifestyle,

nutrition, genes, and exercise. For instance, knowledge advancement and public health measures that improved

sanitation, nutrition, and medical treatments in developed countries have nearly doubled human life expectancy

since 1840 (Figure 1),1,2 increasing average lifespan from approximately 45 to 82 years for women and 76 years

for men. Likewise, gene polymorphism variants of insulin‐like growth factor‐1 (IGF‐1) receptor and forkhead box

O (FOXO) transcription factors are now known to be enriched in the genome of centenarians living in different

regions around the globe.3 Moreover, the predominant Western lifestyle characterized by high‐calorie intake,

poor nutrition, and lack of exercise has been associated with obesity, type 2 diabetes, cancer, and reduced

longevity.4 The aging process is therefore malleable and lifestyle choices have a critical effect on health and

longevity.

A key observation indicating that aging could be modulated is the finding that calorie restriction (CR) extends

lifespan in model organisms. Described for the first time in 1935,5 CR—in which calorie intake is reduced by 10 to

50% while avoiding malnutrition—extends lifespan in yeasts, worms, fruit flies, mice, and nonhuman primates.6,7

Notably, CR modulates highly conserved cellular and physiological pathways that enhance resistance to various forms

of stress, such as nutrient deprivation, DNA damage, and oxidative stress.8,9 The main cellular pathways that mediate

the longevity‐enhancing effects of CR involve insulin and IGF‐1 signaling, mammalian target of rapamycin (mTOR),

and sirtuins.6,9 Living organisms have thus evolved to favor resistance against conditions that are unfavorable for

reproduction and survival, especially in periods of starvation.10

While the possibility to delay aging has sometimes been viewed with skepticism, antiaging interventions such as

CR have been shown to reduce the development of a wide range of aging‐related chronic diseases, including cancer,

F IGURE 1 Increase of female life expectancy from 1840 to 2002. The black line represents the linear
regression trend, while the dashed gray line represents projected life expectancy, assuming continuously linear

increases. The dashed red lines represent life expectancy predictions for female Japanese based on analysis by the
United Nations in 1986 (bottom), 1999 (middle), and 2001 (top). This image was reproduced and adapted from the
work of Oeppen and Vaupel,1 with permission from the American Association for the Advancement of Science

[Color figure can be viewed at wileyonlinelibrary.com]
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cardiovascular disease, diabetes, neurodegenerative diseases, and autoimmune disorders.11 In other words,

strategies that delay aging may not simply prolong the period of time spent in old and frail age but may actually

maintain physiological functions and extend the period of healthy, active, and productive life (also called the

“healthspan”). In humans, CR produces rejuvenating effects on muscles and the heart, and reduces metabolic

markers associated with the development of cancer, cardiovascular disease, and diabetes,12 indicating that

antiaging interventions may prevent some of the most prevalent diseases in humans.

Reducing food intake or maintaining a CR diet over a long period of time represents a difficult challenge for

most people due to hunger, irritability, and poor thermoregulation.13 An alternative is to use pharmaceutical drugs

that mimic the beneficial effects of CR, and increased interest has been devoted to the development of molecules

that modulate the same cellular and physiological pathways as CR.14–16 Consistent with this possibility, CR‐mimetic

drugs such as metformin [1] and rapamycin [2] prolong lifespan and prevent the development of chronic diseases in

various model organisms (Figure 2).17,18 These pharmaceutical drugs are being investigated as possible antiaging

treatments in healthy individuals.

Central to the effects of CR on longevity is the concept of hormesis or the observation that some forms of

stress that are usually toxic at a high dose may produce beneficial effects at a low dose.19,20 An example of

hormesis is the observation that short periods of exposure to hypoxia or nutrient deprivation protect the brain

and the heart against more severe or prolonged hypoxia treatment or nutrient deprivation by activating cellular

processes that protect against cellular stress.21 Consistent with the hormesis concept, CR and intermittent

fasting produce a mild stress that protects against the effects of aging on the body. Even though antiaging

therapies have focused mainly on pharmaceutical drugs such as metformin and rapamycin, another strategy to

delay aging is to induce mild stress by providing low doses of natural compounds derived from plants and fungi.

Vegetables and fruits contain compounds that may induce oxidative stress resistance and the expression of

detoxification enzymes in various organs, including the liver.22 While the concept that nutrients may delay aging

via hormetic effects remains to be demonstrated in humans, epidemiological studies indicate that people who

regularly consume dietary supplements such as glucosamine [3] or have a high nutritional intake of spermidine [4]

live longer than nonusers.23–25

Plants and fungi have been used for thousands of years as tonics to improve health and longevity. Archeological

evidence suggests that Neanderthals who lived ~50 000 years ago used plants and fungi as medicines.26,27 Early

civilizations throughout the globe made use of plants and fungi as foods, spices, and medicines.28 Medicinal plants

continue to be used today, especially in developing countries where pharmaceutical drugs are not widely available.

In Asia, medicinal plants and fungi constitute the basis of traditional Chinese medicine (TCM) and Indian Ayurveda

medicine, which are often used in combination with conventional medical treatments.

Around half of pharmaceutical drugs commonly in use in medicine have been derived, directly or indirectly,

from plants and fungi.29 Well‐known examples include morphine (isolated from opium poppy), the lipid‐
lowering statins and the immunosuppressive molecule cyclosporin A (isolated from fungi), and salicylic acid (a

metabolite of acetylsalicylic acid [5]; initially isolated from willow bark). Plants and fungi continue to represent

sources of drug leads as only a fraction of natural substances have been screened for the identification of

bioactive compounds.

Dietary supplements and nutraceuticals are increasingly used to prevent or treat chronic diseases.

Americans spend on average $US 40 billion on dietary supplements each year.30 Common nutraceuticals

include resveratrol [6], curcumin [7], ginseng, and medicinal mushrooms, which produce different biological

effects, including antidiabetic, antiobesogenic, and immunomodulatory effects.31–33 Notably, many nutraceu-

ticals and phytochemicals extend lifespan and improve the healthspan of model organisms by modulating the

same molecular pathways affected by CR, as described below. We review here the molecular mechanisms of

these plant and fungal molecules and examine the possibility of developing novel antiaging treatments from

natural sources.
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F IGURE 2 Molecules that increase lifespan and/or delay aging in model organisms
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2 | MECHANISM OF LIFE EXTENSION BY MOLECULES ISOLATED FROM
PLANTS AND FUNGI

2.1 | Insulin and IGF‐1 signaling

A major energy‐sensing pathway in the body involves insulin and IGF‐1, which regulate cell growth, development,

protein synthesis, and energy storage (Figure 3). When nutrients such as glucose and amino acids are abundant,

insulin induces nutrient uptake by skeletal muscle and adipose tissue, and energy storage in the form of glycogen or

triglycerides, thus favoring anabolism and energy storage. Conversely, when glucose levels are low, the pancreas

produces glucagon, which stimulates release of stored glucose. Release of the growth hormone (GH) by the

pituitary gland induces IGF-1 secretion by the liver, promoting cell growth and development of the body as well as

protein synthesis and tissue repair in adults (Figure 3).

F IGURE 3 Model illustrating the cellular mechanism of the antiaging effects of plant and mushroom compounds
on the insulin/IGF‐1 signaling pathway. Insulin and IGF‐1 are released into the bloodstream in response to

increased blood glucose and amino acid levels. Insulin binds the insulin receptor on the surface of cells, leading to
cell growth via activation of Ras and MAPK. AMPK is activated by a reduction of ATP and a concomitant increase
of AMP. PGC‐1α is activated by AMPK, which induces mitochondrial biogenesis. mTOR is inhibited by AMPK, a

process that activates autophagy. Binding of insulin and IGF‐1 to their respective receptors activates IRS‐1/2, PI3K,
and Akt, leading to inhibition of FOXO. In the absence of growth factors such as insulin and IGF‐1, FOXO
transcription factors activate several genes that enhance stress resistance, thus improving longevity. Amino acids
derived from the digestion of dietary proteins induce IGF‐1 secretion by the liver, leading to inhibition of GSK3 and

activation of protein synthesis inside cells, thereby reducing autophagy and stress resistance. AMP, adenosine
monophosphate; AMPK, AMP‐activated protein kinase; ATP, adenosine triphosphate; FOXO, forkhead box O;
GSK3, glycogen synthase kinase 3; IGF‐1, insulin‐like growth factor‐1; IGF‐1R, insulin‐like growth factor‐1
receptor; IRS‐1/2, insulin receptor substrate 1/2; MAPK, mitogen‐activated protein kinase; mTOR, mammalian
target of rapamycin; Nrf2, nuclear factor erythroid 2‐related factor 2; PGC‐1α, peroxisome proliferator‐activated
receptor γ coactivator 1α; PI3K, phosphoinositide 3‐kinase [Color figure can be viewed at wileyonlinelibrary.com]
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Although growth signals are required for normal development and tissue repair in humans, studies performed

on model organisms indicate that reduction of insulin/IGF‐1 signaling increases lifespan. For instance,

inactivation of the insulin pathway in the worm Caenorhabditis elegans increases median and maximum lifespan

by nearly 10 fold34—an intervention that produced the longest life extension effect reported thus far.11 Female

mice that harbor loss‐of‐function mutations in the igf‐1 gene in the liver are smaller than controls but live 16%

longer.35 Furthermore, high glucose intake throughout life increases insulin signaling and shortens lifespan in

worms36 and mice.37

Inactivation of the GH/IGF‐1 pathway also produces the longest‐known life extension in mammals (20%–70%

extension of average lifespan depending on the nature of the deficiency).6,38 Transgenic mice that overexpress the

GH show signs of premature aging and reduced lifespan.39,40 A shortened lifespan has also been observed in human

individuals who have acromegaly,18 a condition in which GH secretion is increased, mostly due to a pituitary

adenoma. Similarly, centenarians showed an overepresentation in levels of heterozygous mutations that affect

IGF‐1 receptor function.41 Within a species, there thus appears to be a negative correlation between body size and

longevity that may be mediated mainly by the insulin/GH/IGF‐1 axis.42 Also consistent with this concept is the

observation that a high‐protein diet of animal source, which induces production of IGF‐1 (Figure 3), is associated

with reduced longevity in mice and humans.43,44

Recent studies have shown that reduced insulin/IGF‐1 signaling extends lifespan and improves healthspan by

increasing stress resistance (Figure 3). In response to a lack of nutrients, insulin and IGF‐1 signaling is reduced,

which activates transcription factor proteins called FOXO that in turn induce the expression of a large number of

proteins such as superoxide dismutase (SOD), catalase (CAT), glutathione S‐transferase, metallothioneins, and

chaperones.45–47 These proteins protect the cell and delay aging in various ways, including neutralization of

reactive oxygen species (ROS), repair of DNA damage, maintenance of protein structure via chaperones and

detoxification of heavy metals, among other functions. In humans, a foxo3 gene variant is associated with longer

lifespan,48,49 suggesting that the activation of FOXO transcription factors produces antiaging effects in humans

as well.

Reduction of insulin/IGF‐1 signaling can also be accomplished by adhering to a ketogenic diet (KD), which is low

in starch and simple carbohydrates and high in dietary fiber and foods containing medium‐chain triglycerides such

as coconut oil, avocados, and ghee. This diet is commonly used to lose weight since, in the almost complete absence

of starch and simple carbohydrates and with the depletion of glycogen stores in the liver and skeletal muscles, the

body predominantly burns fats which are converted into ketone bodies by the liver. In this case, the ketone bodies

acetoacetate, acetone, and β‐hydroxybutyrate (BHB; 8) serve as a source of energy, replacing the usual

contribution from carbohydrates. The low‐carbohydrate KD increases lifespan in mice and improves healthspan by

promoting motor functions, memory, physical endurance, and muscle mass.50 The effects of KD feeding on lifespan

and healthspan have been attributed at least in part to reduced insulin/IGF‐1 signaling.

Various plant and fungal molecules modulate the insulin/IGF‐1/FOXO pathway in worms, fruit flies, and rodents

(Table 1). For instance, aspalathin [9], a glycoside compound isolated from rooibos tea leaves, extends the lifespan

of worms by 20% to 25% under high glucose feeding.52 The life extension effect of aspalathin is associated with

reduced cellular ROS accumulation and activation of daf‐16, the ortholog of foxo in worms. Notably, other studies

showed that aspalathin is absorbed by mammals118 and the compound is detected in human plasma after drinking

rooibos tea.119,120

Quercetin [10], a major flavonoid polyphenol in the human diet, including in spices, vegetables, and fruits such

as coriander, red onions, and cranberries, also extends lifespan in worms.100 Quercetin increases mean and median

lifespan by 18% and 21%, respectively, while maximal lifespan is not affected. Quercetin does not increase lifespan

in worms lacking the daf‐2 gene, which encodes an ortholog of the human IGF‐1 receptor. On the other hand,

mutation of the daf‐16 gene does not prevent the life extension effect of quercetin,100 indicating that other

pathways may also be involved in the lifespan effects.
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The small carbohydrate compound inositol [11], which is found in fruits, beans, and nuts, has been shown to

extend lifespan in fruit flies.75 The lifespan of male and female fruit flies fed with a diet supplemented with inositol

is extended by 17% and 13%, respectively. The life extension effect of inositol is attributed to activation of the

dfoxo pathway (the ortholog of foxo in fruit flies), which is associated with reduced ROS levels. Inositol also

improves the climbing ability of flies, suggesting that this treatment also improves the healthspan. The inositol‐
related compound pinitol extends lifespan in a similar fashion.75

In mammals, epicatechin [12], a flavanol compound isolated from cacao, extended the lifespan of obese diabetic

mice (50% mortality was observed in untreated mice vs 8% in epicatechin‐treated mice).58 Epicatechin treatment

reduced aorta and liver degeneration, and was associated with reduced systemic inflammation and improvements

of muscle stress output and antioxidant levels in the liver. Notably, epicatechin treatment reduced blood IGF‐1
levels, suggesting reduced activation of the IGF‐1 pathway.

Another study showed that the compound resveratrol, a widely studied phenolic compound found in grapes,

blueberries, and red wine, increases the lifespan of mice fed a high‐calorie diet.104 The compound enhanced insulin

sensitivity and reduced blood IGF‐1 levels, suggesting a reduction of insulin/IGF‐1 pathway signaling. Notably,

resveratrol also improved motor and balance function, and performance of the treated mice improved with time in

exercise challenges. Studies showed that resveratrol reduced age‐related degeneration in cognitive function, blood

vessels, and bones but failed to extend lifespan in mice in the absence of a high‐calorie diet or high‐fat diet

(HFD).121,122

While some natural compounds listed in Table 1 modulate IGF‐1 levels in model organisms, it is unclear if these

compounds act directly on GH, IGF‐1, or other upstream targets. Moreover, IGF‐1 is required for neurogenesis and

the remodeling of neurons in the adult mammalian brain, a process termed neuroplasticity which is needed for

learning and memory.123 Accordingly, IGF‐1 levels and cognitive functions decline with aging. Similarly, GH and

IGF‐1 have protective effects on the vasculature, which may also affect brain functions.123 Yet, a recent study

showed that targeting the IGF‐1 receptor with a monoclonal antibody increased lifespan by 9% in old female mice,

in addition to reducing inflammation and tumor formation.124 It thus remains to be seen whether antiaging

interventions that target IGF‐1 may be viable in humans.

2.2 | mTOR and autophagy

mTOR is a kinase that regulates cell growth, metabolism, and nutrient sensing in the cell. When amino acids or

glucose are scarce, as occurs during fasting, CR, and prolonged exercise, mTOR is inhibited, shutting down cell

growth to maintain existing nutrient and energy levels (Figure 3).125 Inhibition of mTOR activates autophagy, a

cellular mechanism that degrades and recycles damaged molecules and organelles, thus maintaining nutrient and

energy levels. Autophagy produces a rejuvenating effect on cells and tissues as it reduces the amount of damaged

molecules and organelles.126,127 mTOR is also part of the insulin/IGF‐1 pathway as inhibition of mTOR reduces

insulin and IGF‐1 signaling,125 thus activating FOXO and the expression of genes that increase cellular resistance to

stress, as mentioned above. mTOR activity is stimulated by insulin, growth factors, serum, and oxidative stress, thus

linking mTOR with other aging‐related pathways.15

Several observations indicate that mTOR and autophagy are involved in aging. Autophagy can be activated by

rapamycin, an immunosuppressive drug used to prevent organ transplant rejection in humans but which also

increases lifespan in various organisms ranging from worms to mice.125,127 Rapamycin extends lifespan by 9% to

14% in aged mice128 and by 10% to 15% in young mice.122 Notably, animals treated with rapamycin are healthier

and show fewer signs of aging in multiple organs and tissues.

Autophagy decreases with age, a process that may lead to cellular and organ dysfunction and the development

of various chronic and degenerative diseases.127 Mice in which autophagy is inactivated in the brain by conditional

knockout of the autophagy‐related gene atg7 show increased neuronal degeneration and a shorter lifespan.129

Autophagy degrades protein aggregates associated with neurodegenerative diseases, including amyloid‐β and tau
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(involved in development of Alzheimer’s disease), mutant huntingtin (associated with the development of

Huntington’s disease), and parkin (a protein mutated in some cases of autosomal recessive Parkinson’s disease).130

The decrease in autophagy may thus contribute to the development of neurodegenerative diseases.

mTOR inhibition is mediated by adenosine monophosphate‐activated protein kinase (AMPK), an enzyme that

acts as an energy sensor within cells (Figure 3). AMPK is activated by adenosine monophosphate (AMP) and

inhibited by adenosine triphosphate (ATP), therefore coupling AMPK activity with energy levels.131 Activation of

AMPK enhances formation of ATP by promoting lipid oxidation while also inhibiting ATP‐consuming pathways

involved in the biosynthesis of new molecules such as gluconeogenesis in the liver. In addition to inhibiting mTOR

and inducing autophagy, AMPK activates peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α),
inducing expression of genes involved in lipid oxidation and mitochondria biogenesis.132

AMPK activity is also regulated by nutrients and hormonal status.131 CR and prolonged exercise activate

AMPK, resulting in catabolism and conversion of lipids into energy. AMPK is also activated by adiponectin, a

protein hormone that regulates glucose and fatty acid breakdown. Adiponectin levels increase during CR, leading to

enhanced insulin sensitivity, mTOR inhibition, and autophagy. Finally, AMPK activity regulates the energy status of

the whole body by regulating food intake via its activity on specific neurons of the hypothalamus.131

The dietary supplement glucosamine, a monosaccharide derived from crustaceans and fungi, extends the

lifespan of worms and aging mice by increasing AMPK activity71 (Table 1). Glucosamine induces AMPK activity by

inhibiting glycolysis, which induces mitochondrial biogenesis in the liver, thereby shifting metabolism toward amino

acids as a source of energy. While glucosamine has been mainly used as a dietary supplement to prevent cartilage

loss in osteoarthritic patients, people who consume glucosamine live longer than nonusers.23,24 Regular intake of

glucosamine is also associated with reduced risk of colorectal and lung cancer.133–135

The antidiabetic drug metformin (a biguanide compound that was obtained by chemical modification of

guanidine, originally isolated from French lilac) activates AMPK (although indirectly), leading to mTOR inhibition

and autophagy. Metformin increases lifespan of worms and mice in an AMPK-dependent manner.136,137 In mice, a

diet containing a low dose of metformin increases lifespan by 5%, whereas toxicity is observed at a high dose.

Metformin also increases healthspan and physical fitness of mice, which performed better than untreated controls

in exercise challenges.137 Another study showed that metformin treatment increases mean lifespan of mice by 38%

and maximum lifespan by 10%.138 Epidemiological evidence suggests that diabetic patients who take metformin live

longer than untreated diabetic patients and healthy, nondiabetic individuals.139 Metformin is also associated with a

reduced incidence of cancer140 and cardiovascular disease.141

Autophagy is required for the life extension effects of resveratrol and CR in worms, fruit flies, and mice.105,127

Resveratrol and CR do not extend the lifespan of worms in the absence of beclin‐1, a protein involved in autophagy.

In mice fed a high‐calorie diet, resveratrol extends lifespan by increasing AMPK activity, which leads to increased

PGC‐1α activity and mitochondrial biogenesis.104 Similarly, epicatechin from cacao activates AMPK in the liver and

skeletal muscles58 (Table 1). Other natural compounds that activate AMPK include berberine (13; an alkaloid from

Berberis plants), capsaicin (14; a pungent compound found in chili), epigallocatechin gallate (15; EGCG; a polyphenol

found in green and black tea), genistein (16; an isoflavone compound found in various foods including soybeans and

coffee), ginsenosides (steroid glycosides isolated from ginseng), and curcumin (from turmeric, the plant used to

make curry).142–145

Coffee, one of the most widely consumed beverages in the world, induces autophagy in the liver, heart, and

muscles in mice.146 It was proposed that coffee polyphenols may be responsible for inducing autophagy as both

noncaffeinated and caffeinated coffee induced autophagy.146 Yet, caffeine also inhibits mTOR signaling on its

own,147 possibly contributing to the autophagy‐inducing effect of coffee. Notably, regular consumption of coffee is

associated with reduced all‐cause mortality,148,149 an observation that may be due at least in part to the induction

of autophagy. On the other hand, the autophagy‐activating effects of coffee may be reduced or neutralized by the

relatively large quantity of proteins usually consumed in a typical western breakfast.
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Other foods that inhibit the mTOR pathway and induce autophagy include garlic150 and medicinal mushrooms

such as Ganoderma lucidum and Hirsutella sinensis.151,152 Natural compounds that inhibit mTOR and may induce

autophagy include allicin (17; an organosulfur compound isolated from garlic), butein (18; a chalcone found in

plants), celastrol (19; a triterpenoid compound isolated from the plant Trypterygium wildfordii, a plant used in TCM

to treat arthritis and fever), fisetin (20; a flavonoid found in vegetables and fruits), and quercetin.153–156 Given that

mTOR inhibition represents one of the most effective mechanisms to increase lifespan, these compounds and their

derivatives represent ideal candidates for the development of antiaging nutraceuticals.

2.3 | Sirtuins and acetyltransferases

Sirtuins are a group of histone deacylase enzymes that modulate cellular functions by removing acyl groups on

histones and other proteins.157 Sirtuin activity requires the cofactor nicotinamide adenine dinucleotide (NAD+) as

an acyl group acceptor and the enzyme is inhibited by the reduced form of the compound (NADH; Figure 4). Given

that NAD+ and NADH are involved in nutrient oxidation to produce energy, sirtuin activity varies according to the

energy status of the cell. Accordingly, sirtuins’ deacylase activity increases during fasting and exercise while it is

reduced during periods of overnutrition and anabolism.158

F IGURE 4 Model depicting the regulation of sirtuin activities by plant and mushroom compounds and their
effects on longevity. Sirtuins use NAD+ as a cofactor to deacetylate various proteins involved in stress resistance,

autophagy, mitochondrial biogenesis, inflammation, DNA repair, and cell survival. Some plant compounds including
butein, fisetin, quercetin, and resveratrol may indirectly activate sirtuins and produce beneficial effects on
longevity. Sirtuin activity can also be induced by calorie restriction, NR, NMN, and exercise, which increase NAD+

levels. On the other hand, aging, DNA damage, and inflammation may reduce sirtuin activity by consuming NAD+. A

HFD and sedentarity may increase NADH levels and inhibit sirtuins. AMPK, adenosine monophosphate‐activated
protein kinase; FOXO, forkhead box O; HFD, high‐fat diet; HIF‐1α, hypoxia‐inducible factor‐1α; NAD, nicotinamide
adenine dinucleotide; NF‐κB, nuclear factor κ‐light‐chain‐enhancer of activated B cells; NMN, nicotinamide

mononucleotide; NR, nicotinamide riboside [Color figure can be viewed at wileyonlinelibrary.com]
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Sirtuins are involved in aging in yeasts, worms, fruit flies, and mice. Overexpression of sirt2 extends lifespan in

worms and fruit flies.159,160 In mice, overexpression of sirt6 throughout the body extends the lifespan of male mice

by 15%.161 Sirt1 overexpression in the brain also extends the lifespan of mice.162 Moreover, sirt1 activation reduces

various age‐related diseases, including diabetes, cardiovascular disease, inflammation, and neurodegeneration in

model organisms.163 Conversely, sirt6‐deficient mice show premature aging associated with genomic instability and

DNA repair defects at the cellular level.164 Activation of sirtuin activity, therefore, represents a target for

prolonging lifespan and delaying aging.

Sirtuins modulate lifespan and aging by regulating various cellular pathways (Figure 4). For instance, sirtuin‐1
deacetylates and activates PGC‐1α, thereby inducing fatty acid oxidation and mitochondrial biogenesis.165 SIRT1

also deacetylates FOXO proteins, leading to their activation and transcription of proteins that improve stress

resistance.166 Other target proteins of SIRT1 include hypoxia‐inducible factor‐1α (HIF‐1α), which may promote cell

longevity by inhibiting glycolysis, as well as nuclear factor κ‐light‐chain‐enhancer of activated B cells (NF-κB),

leading to its inactivation and reduced inflammation.157,167 Sirtuins also deacetylate the DNA repair protein Ku70

in response to DNA damage, thus promoting DNA repair and cell survival.168 Similarly, SIRT2 deacetylates the

tumor suppressor p53 in response to oncogenic overexpression, preventing senescence and inducing cell

survival.169 Sirtuins also deacetylate LKB1, a key regulator of AMPK, thus reducing senescence.170

Several plant‐derived polyphenol compounds including butein, fisetin, piceatannol (21; a resveratrol derivative),

quercetin and resveratrol activate SIRT1 (Figure 4).54 But other studies showed that resveratrol may also activate

SIRT1 indirectly by acting on an upstream target such as AMPK.163 Nonetheless, resveratrol extends lifespan in

yeasts, worms, and fruit flies, and these effects were associated with increased SIRT1 or SIRT2 activities.54,67,105

Resveratrol also improves the healthspan in various animal disease models.171 Sirtuin‐activating compounds

(STACs) have been developed and these have been described to be 1000 times more active than resveratrol at

activating SIRT1.172 One of these molecules, called SRT1720 [22], extends mean and maximum lifespan in HFD‐fed
mice and is associated with improved insulin sensitivity, locomotor activity, and inflammatory profile.173 SRT2104

[23] also prolonged the mean and maximum lifespan of male mice and produced other beneficial health effects,

including enhanced motor coordination and maintenance of bone and muscle mass.174 While many STACs are more

bioavailable than resveratrol and have produced beneficial effects on aging‐related diseases in preliminary clinical

trials,175 it still remains unclear whether they may be used to improve health and longevity in humans.

Another means to increase sirtuin activity is to supplement with molecules that increase NAD+ levels (Figure 4).

Supplementation with NAD+ does not appear feasible since mice experience hyperglycemia, possibly due to

increased glycogenolysis.176 The NAD+ precursor nicotinamide riboside (NR; 24), which is available as a dietary

supplement, increases lifespan in mice, an effect associated with improved mitochondrial and stem cell functions88

(Table 1). On the other hand, given the multiple activities of NAD+ in cellular metabolism, it is likely that other

effects contribute to the antiaging properties of this compound.

Other studies have shown that some sirtuins may also have proaging properties. For instance, a study showed

that sirt2 deficiency in nondividing yeasts increased the longevity‐enhancing effects of CR and further enhanced

the lifespan of long‐lived Sch9 yeasts.177 Furthermore, mice lacking sirT1 (the mammalian ortholog of yeast sirt2)

showed reduced signs of oxidative stress in the brain, but these animals had a reduced lifespan under a normal or

CR diet.178 It thus appear that sirtuin activity may play both antiaging and proaging roles, depending on cell types,

species and experimental conditions.

Besides sirtuins, other enzymes that affect protein acetylation include acetyltransferases that acetylate various

cellular proteins and also modulate aging pathways. Levels of acetyl coenzyme A (acetyl CoA), derived from

carbohydrates and lipids via glycolysis and β‐oxidation and used as a source of energy via oxidation in the citric acid

cycle, decrease during fasting or CR, and this process regulates protein acetylation and autophagy. In the presence

of abundant nutrients and acetyl CoA, the acetyltransferase EP300 inhibits autophagy by adding acetyl groups onto

various autophagy core proteins (ATG5, ATG7, ATG12, and LC3).179 Several plant compounds such as curcumin,

EGCG, and garcinol (25; a compound isolated from Garcinia indica) inhibit EP300 in cultured cells.180–182
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Another molecule that inhibits acetyltransferase enzymes is spermidine (Table 1), an endogenous cellular

compound also found in high amounts in foods such as natto (a Japanese fermented soybean preparation),

mushrooms, soybeans, and aged cheese.183 Studies have shown that spermidine inhibits the acetyltransferase

EP300, and this inhibition is sufficient to induce autophagy and produce antiaging effects in mice.183 Spermidine fed

life‐long or late in life enhances the lifespan of mice and produces cardioprotection effects in an ATG5‐dependent
manner, indicating that autophagy is involved. In addition, spermidine improves blood pressure in an animal model

of hypertension‐induced congestive heart failure in rats. Furthermore, epidemiological evidence indicates that

spermidine consumption is associated with reduced all‐cause mortality in humans.25

The anti‐inflammatory drug acetylsalicylic acid (aspirin) and its metabolite salicylic acid were also shown to

induce autophagy by inhibiting EP300 in worms and mice109 (Table 1). Both compounds increased lifespan in

worms,108 and acetylsalicylic acid increased mean lifespan in genetically heterogeneous male mice but no effect

was observed in female mice.87 Long‐term consumption of low dose acetylsalicylic acid is associated with reduced

cancer and all‐cause mortality in humans.184,185 While this observation has been attributed to the anti‐
inflammatory and antithrombotic activities of the compound, recent work suggests that the autophagy‐inducing
effect of this compound may also contribute to improving survival. Acetylsalicylic acid is thus being considered as a

CR mimetic,186 although it is not devoid of negative side effects (eg, bleeding, gastrointestinal ulcers, and nausea).

Moreover, a recent study showed that acetylsalicylic acid did not prolong disability‐free survival over a 5‐year
period in healthy elderly subjects,187 implying that the effects of acetylsalicylic acid on aging are not as

straightforward as previously assumed.

Given that acetyl CoA is needed for protein acetylation, depletion of acetyl CoA pools in the cell may also affect

autophagy. Accordingly, hydroxycitrate [26], a compound isolated from Garcinia cambogia fruits which have been used

as a dietary supplement for weight loss,188 depletes acetyl CoA levels and induces autophagy in vivo.189

Hydroxycitrate affects acetyl CoA levels by inhibiting citrate lyase, a key enzyme in the citric acid cycle. Oral intake of

hydroxycitrate in mice for 2 days induces autophagy throughout the body.189 This compound is thus likely to produce

antiaging effects by mimicking CR.

DNA damage, which increases with aging, leads to activation of poly(ADP‐ribose) polymerase, marking DNA for

repair and consuming NAD+.157 HFD‐induced inflammation may also reduce NAD+ levels by inhibiting nicotinamide

phosphoribosyltransferase, an enzyme involved in the conversion of nicotinamide into NMN.157 Levels of the

NADase enzyme CD38 also increase in aging, which may further contribute to reducing NAD+ levels and sirtuin

activity in aging tissues.190,191 Quercetin and apigenin (27; a flavone compound found in many plants) inhibit

CD38192 and represent good candidates to produce antiaging effects by inducing sirtuin activity.

2.4 | ROS and antioxidants

Aging is associated with a progressive accumulation of molecular and cellular damage, eventually leading to organ

malfunction and a decline in physiological function. With time, accumulation of mutations in DNA, aggregated

proteins, and oxidation of lipids are believed to overwhelm the reparative capacity of the body and eventually lead

to organ failure and disease. In the 1950s, it was proposed that ROS produced as a by‐product of cellular

respiration in mitochondria may be the cause of aging.193 Consistent with this concept, ROS accumulate with age as

mitochondrial function declines and high levels of ROS may lead to protein damage, organelle dysfunction, DNA

damage, and aging.194 Antioxidants may directly neutralize ROS, thus preventing cell damage and improving

cellular functions. Various phytochemicals produce antioxidant activities and increase lifespan in worms, fruit flies,

and rodents (Table 1).

On the other hand, antioxidants do not increase lifespan in all circumstances. For instance, overexpression of

antioxidant enzymes increased lifespan in invertebrates such as fruit flies195 but failed to increase lifespan in

mice.196,197 In humans, while some large epidemiological studies found a positive correlation between antioxidant
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vitamin intake and reduced mortality,198,199 systematic reviews of clinical trials indicate that antioxidant

supplements such as vitamins A and E and β‐carotene were associated with a slightly increased mortality risk.200,201

The inconsistent observations regarding the effects of ROS and antioxidants on aging may be due to species‐
related variation in oxidative stress resistance or to the signaling and functional roles of ROS in different species. In

mammals, production of ROS in immune cells such as macrophages and neutrophils is beneficial to kill pathogens. In

addition, ROS may also act as a secondary messenger to activate various cellular processes, especially those

involved in the protection of cellular damage and the repair process; and at low levels, ROS also plays a beneficial

role in response to physiological stimuli such as insulin by reversibly oxidizing and inhibiting protein

phosphatases.202 For instance, glucosamine supplementation increases lifespan by stimulating the formation of

ROS which induces mitochondrial biogenesis in worms and aging mice.71 Moreover, exercise induces ROS

production and the expression of antioxidant enzymes such as SOD and CAT to protect cells and tissues from

oxidation. Surprisingly, consumption of antioxidants may prevent the exercise‐induced increase in ROS and reduce

the beneficial effects of exercise on insulin sensitivity and neutralization of ROS.203

ROS may participate in the aging process, and neutralization of free radicals by antioxidants may delay aging

and prolong lifespan under some circumstances. Yet, reduction of ROS formation may also interfere with cellular

pathways involved in stress resistance and damage repair and, at low levels, ROS may play a beneficial role in

normal cellular function; thus the need for careful consideration of the interventions used. It is also worth noting

that natural antioxidant compounds may increase lifespan via other ROS‐independent mechanisms (Table 1).

2.5 | Telomerase activation

The ends of chromosomes are susceptible to erosion with time and cell divisions due to oxidation, recognition by

DNA repair enzymes as broken DNA, or shortening due to incomplete replication by DNA polymerases during cell

division. Telomerase protects telomeres by adding sequence‐specific DNA at chromosomal ends. While telomerase

is active in most cells during fetal development as well as in stem cells and continuously‐replicating cells after birth,

most somatic cells have low or no telomerase activity and are unable to prevent telomere erosion.204 Telomere

shortening is believed to contribute to the replicative limit of cells, which leads to senescence.

Consistent with this possibility, telomere length has been shown to reflect the replication potential of cultured

cells.205 Moreover, reintroduction of the telomerase gene renders many human primary cell lines immortal.206 Mice

that lack telomerase have short telomeres and show premature tissue degeneration associated with reduced stem

cells in the bone marrow and skin.207,208 Telomere length is predictive of mortality from age‐associated pathologies

in humans, including heart disease and infections.209

The potential to reactivate telomerase in somatic cells has shown promise to prevent senescence and increase

lifespan. A natural plant compound called cycloastragenol [28] isolated from the roots of Astragalus membranaceus

(a plant used as a tonic in TCM) has been reported to activate telomerase in cultured human CD4+ and CD8+ T

lymphocytes.210–212 Cycloastragenol delayed telomere shortening, increased replicative capacity, and improved

immune function in cultured CD8+ T lymphocytes isolated from human immunodeficiency virus‐positive
individuals.213 In female mice, cycloastragenol, also called TA‐65, increased telomere length in some tissues, most

notably in the liver, and improved some healthspan indicators including glucose tolerance, osteoporosis, and skin

aging but no lifespan increase was observed.214 Notably, TA‐65 treatment did not increase cancer incidence in this

study.

A randomized controlled clinical trial of 117 healthy volunteers aged 53 to 87 years who took the dietary supplement

for one year showed that cycloastragenol increased telomere length, while the telomeres of people in the control group

became shorter during this period.215 A clinical trial showed that TA‐65 used in combination with a vitamin supplement

improved bone density, blood pressure, and metabolic markers in healthy individuals over a 5‐year period but the

contribution of TA‐65 alone was not determined.216 Another small double‐blind, placebo‐controlled trial done on 38

individuals showed that TA‐65 improved macular function in patients with age‐related macular degeneration.217
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Perhaps encouraging in this area are the findings that lifestyle changes involving smoking cessation, exercise

and a proper diet increase telomere length and may delay signs of aging and age‐associated diseases in humans,218

although it is unclear whether these changes can be attributed to elongated telomeres. In view of the preliminary

data described in this field, it remains to be seen if telomerase reactivation by phytochemicals may delay aging at

the organismal level. Moreover, a possible side effect of telomerase activation is the increased risk of cancer, which

may preclude the use of this intervention in healthy humans.

2.6 | Senolytics

Senescence is an irreversible state in which cells stop replicating and usually become resistant to apoptosis.219 A

variety of cellular stress can induce senescence, including DNA damage (telomere erosion), oncogenic expression

(Ras), nutrients (high glucose), metabolites (ROS and ceramides), hormones (GH and IGF‐1), molecular damage

(protein aggregation, the unfolded protein response), and inflammation (interleukin‐1β and interleukin‐6).
Senescent cells often attract immune cells and induce inflammation by secreting proinflammatory cytokines and

danger‐associated molecular patterns. Senescent cells accumulate in various tissues during aging and contribute to

organ dysfunction and the development of chronic disease. As such, injection of senescent cells into the joint is

sufficient to induce the development of an osteoarthritis-like condition in mice.220 Consistent with these results,

elimination of senescent cells using a drug‐inducible transgenic “suicide” gene improved healthspan in genetically‐
modified mice.221 Based on these observations, the elimination of senescent cells has emerged as a promising

strategy to delay aging and reduce age‐related diseases.

Senolytics are a new class of compounds that kill senescent cells by rendering them susceptible to apoptosis.

The tyrosine kinase dasatinib and the flavonoid quercetin induce apoptosis of senescent cells without affecting

normal cells.222 The flavone compound fisetin also has senolytic properties in cells cultured in vitro.223 Other

compounds such as curcumin and resveratrol did not possess senolytic properties in the assay used.224 The plant

compound piperlongumine [29], a compound isolated from various plants of the Piper genus, showed proapoptotic

properties in senescent cells.225 Piperlongumine derivatives obtained by chemical modification also induced

apoptosis in senescent cells.

In mice, many senolytic compounds eliminate senescent cells and produce beneficial effects in the host. The

mixture of desatinib and quercetin took orally for a few days reduced the number of senescent cells in old mice.222

A single course of the senolytic cocktail improved cardiovascular function in old mice. Moreover, a single dose of

the mixture enhanced physical endurance in mice in which one leg had been irradiated to induce accumulation of

senescent cells. Notably, the desatinib and quercetin cocktail increased mouse lifespan compared with controls.102

Desatinib and quercetin also reduced senescent cell accumulation in the lungs, inflammation, fibrosis, and

respiratory dysfunctions in a model of bleomycin‐induced pulmonary fibrosis.226

The field of senolytics is relatively new and more studies will be needed to determine the possibility of using

such treatments to delay aging. One interesting advantage in this study is the fact that many of cellular pathways

involved in senescence are known. These advances may facilitate the development of active compounds to target

senescent cells.

2.7 | Other potential antiaging mechanisms

Inhibition of fat absorption represents a possible mechanism that may produce CR‐mimetic effects on longevity and

health.15 Natural compounds that have been considered in this category include dietary fiber, which reduces lipid

levels in the body by blocking their absorption by the intestine.31 Similarly, chitosan [30], a polysaccharide

produced by deacetylation of chitin from cell walls of fungi or crustaceans, may reduce body weight, total

cholesterol, and blood pressure.227 On the other hand, no long‐term studies have been performed to determine

whether these compounds prolong lifespan in animals.
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Other ways to mimic the effects of CR include suppression of appetite or inhibition of the intestinal enzymes

responsible for carbohydrate and lipid digestion.15 Several molecules isolated from plants and fungi have been

shown to suppress appetite.31 For instance, celastrol suppresses appetite and food intake in HFD‐fed mice by

increasing leptin sensitivity.228 Similarly, various plant‐derived molecules that inhibit intestinal enzymes

responsible for carbohydrate and lipid digestion may have a beneficial effect on health.31,229

Natural compounds that inhibit glycolysis may also exhibit antiaging effects. One of the first CR mimetics

studied was 2‐deoxyglucose [31], a glycolysis inhibitor that reduced body temperature and fasting serum insulin

levels in rats.230 On the other hand, this compound was later found to induce cardiotoxicity and increase mortality

in the treated animals.231 Glucosamine also inhibits glycolysis and extends lifespan in worms and mice (Table 1).

This compound mimics a low‐carbohydrate diet and represents a promising candidate for reducing aging.

Excess glucose may combine covalently with proteins, DNA and lipids, to form advanced glycation end‐products
(AGEs) which impair physiological function and contribute to organ dysfunction and aging.232 AGEs are also found

in food that are heated or cooked and are readily found in human blood.233 In animal models, the level of AGEs in

the diet correlates with blood AGE levels, and they stimulate inflammation and oxidative stress, leading to the

development of diabetes, cardiovascular disease, chronic kidney disease, and neurodegeneration.234 Some

phytochemicals such as proanthocyanidins found in fruits (Table 1) and catalpol [32] found in plants of the

Rehmannia genus (Table 2) reduce the levels of AGEs in worms and mice, respectively.

Dampening inflammation may be beneficial for prolonging lifespan and improving the healthspan.303 While

inflammation is required for immune responses against infection or for wound healing, tissue damage that increases

with aging may induce chronic inflammation. Low levels of chronic inflammation are also associated with the

development of other chronic diseases, from heart disease, cancer, and stroke, to Alzheimer’s disease and type 2

diabetes. Many plant and fungal compounds that increase lifespan and improve healthspan reduce signs of

inflammation in model organisms (Tables 1 and 2). The immunosuppressive drug rapamycin also produced robust

lifespan‐enhancing effects in rodents (mainly through its inhibitory effects on mTOR).122,128 Chronic inflammation

is associated with overactivation of mTOR, indicating that mTOR inhibition may also produce antiaging effects by

reducing inflammation.125

The gut microbiota plays a role in many physiological functions304 and may also influence longevity.305 A search

for bacteria that are beneficial in worms has shown that specific bacterial mutants lacking a single gene can extend

lifespan in worms.306 Some of these mutants protect the host against age‐related tumor formation or amyloid‐β
deposition, or modulate the unfolded protein response. Some probiotics extend the lifespan in mice by producing

polyamine compounds that induce anti‐inflammatory effects and improve colonic mucosal function.307 Similarly, a

mixture of prebiotics (inulin‐type fructans) and probiotics (Lactobacillus reuteri) reduced hepatic cell proliferation

and muscle wasting and improved survival in leukemic mice.308 Compounds that increase longevity and healthspan

such as rapamycin and metformin also influence the composition of the gut microbiota. Metformin increased the

abundance of beneficial bacteria (ie, Akkermansia muciniphila, Clostridium cocleatum) and affected bacterial

metabolism associated with beneficial effects on the host,309 whereas rapamycin induced changes in the gut

microbiota that are observed in obesity and diabetes, including reducing levels of Marinilabiliaceae and Turicibacter

spp.310

The gut microbiota may also mediate the lifespan‐enhancing effects of phytochemicals. For instance, the gut

microbiota of the large intestine ferments dietary fiber and polysaccharides to produce short‐chain fatty acids

(SCFAs), which may have beneficial effects on the host. Butyrate is a SCFA that is converted into the ketone body

BHB which enhances the mean lifespan of worms by ~20%.311 BHB levels in the blood also increase during fasting,

intense exercise, or KD feeding. BHB acts as a source of energy independent of glucose (thus reducing insulin and

IGF‐1 signaling) but it also inhibits histone deacetylases, thus activating PGC‐1α and the FOXO pathway and

possibly delaying aging by increasing stress resistance.312,313 Based on these observations, some authors proposed

that the life extension effects of CR and KD may be mediated at least in part by BHB.312,313 In addition, BHB

inhibits the NLRP3 inflammasome, thereby further reducing inflammation.314
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Stem cells are also involved in the aging process as the inability to replenish tissues with stem cells may lead to

cellular dysfunction and tissue degeneration. Plant extracts can stimulate stem cell growth and represent potential

candidates for antiaging formulations.315 Plant‐derived compounds in this category include resveratrol, genistein,

quercetin, and naringin [33]. Notably, the NAD+ precursor NR increases lifespan in mice at least in part by rejuvenating

muscle stem cells and preventing senescence in neural and melanocyte stem cells.88 The possibility of controlling stem

cell fate using plant‐derived molecules has also been examined.316 Furthermore, hematopoietic stem cells from old

mice show increased mTOR activity, and rapamycin restored hematopoiesis and hematopoietic stem cell self‐renewal
in old mice,317 indicating that compounds that inhibit mTOR may delay aging by improving stem cell function.

3 | ADDITIVE AND SYNERGISTIC EFFECTS OF PLANT AND FUNGAL
MOLECULES ON LIFESPAN

One could envision delaying aging by developing a cocktail of molecules isolated from plants and fungi that affect

different aging‐related pathways, with the hope of producing additive or synergistic effects. This strategy is

reminiscent of the “herbal shotgun” approach used with most plant extracts, in which various compounds affect a

multitude of cellular and physiological targets; in contrast with the “magic bullet” approach, in which a

pharmaceutical drug targets a single pathway.31,318 The polypharmacy approach is also used in medicine when

several drugs are combined to treat a specific ailment or condition.

At doses in which neither resveratrol nor spermidine alone increased autophagy, the two compounds used in

combination induced autophagy in a synergistic manner in yeasts and worms.112 Similarly, a mixture of acetic acid

[34] and polysaccharides derived from G. lucidum extended the lifespan of worms by 30% to 40%, an effect that was

more intense than the sum of the effects produced by the two compounds alone.96 These studies suggest that

combining several compounds may produce synergistic effects on aging‐related pathways.

A mixture of compounds containing vitamins B, C, D, and E, α‐lipoic acid, coenzyme Q10, and extracts derived

from cod liver oil, flax seed oil, garlic, ginger, Ginkgo biloba, ginseng, and green tea prolonged the lifespan of normal

mice and GH‐overexpressing transgenic mice by 11% and 28%, respectively.319 Designed to reduce ROS formation

and inflammation, promote mitochondrial integrity, and increase insulin sensitivity,320 the mixture reduced brain

cell loss and cognitive decline in aged mice that overexpress GH.320,321 While it is unclear whether additive or

synergistic effects were produced in this case, this study demonstrates the feasibility of the strategy to increase

lifespan and healthspan. On the other hand, the nutraceutical mixture did not extend the lifespan of the long‐lived
F1 strain of mice,322 suggesting involvement of the genetic background of the animals tested.

Another mixture of plant extracts and dietary supplements containing pterostilbene (a chemical related to

resveratrol), theanine (an amino acid isolated from tea leaves), A. membranaceus root, Pterocarpus marsupium bark, and

pine bark extended lifespan in fruit flies maintained under stress conditions.323 The treated fruit flies showed

increased resistance to partial starvation and heat, suggesting that at least some antiaging pathways may have been

activated. The dietary supplement was designed to modulate aging pathways related to antioxidant potential,

inflammation, metabolism, and vascular endothelial growth factor (VEGF). These studies suggest that a mixture of

molecules may modulate the activities of multiple pathways in vivo, possibly producing additive or synergistic effects.

4 | EFFECTS OF PLANT AND FUNGAL COMPOUNDS ON HEALTHSPAN

Many studies examined the possibility that plant and fungal compounds may reduce signs of aging by comparing

physiological functions in young and old animals (Table 2). Another strategy has examined the effects of plant and

fungal compounds on animals treated with galactose, which has been used to enhance aging. Natural compounds
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have also been tested for their ability to delay age‐related disease in animal models, including Alzheimer’s disease,

amyotrophic lateral sclerosis, liver and kidney damage, chronic inflammation, obesity, and diabetes (Table 2).

Several plant and fungal compounds delay brain aging in animal models. For instance, astragalosides derived

from A. membranaceus delay motor decline and improve memory in galactose‐induced aged mice.242 Similarly,

EGCG reduces oxidative stress in the hippocampus and improves cognitive functions and locomotive activity in

galactose‐treated mice.254 Huperzine A [35], a sesquiterpene compound isolated from the firmoss H. serrata,

increases neurogenesis and reduces cognitive decline when fed orally to rodents.264,265

Our group showed that high‐molecular‐weight polysaccharides isolated from the medicinal fungus G. lucidum

reduce obesity, insulin resistance, and inflammation in HFD‐fed mice.283 These effects were associated with

reduced intestinal permeability and modulation of the composition of the gut microbiota, indicating that the

polysaccharides act as prebiotics. High‐molecular‐weight polysaccharides isolated from the medicinal mushroom

H. sinensis, the anamorph of Ophiocordyceps sinensis, also reduces obesity and insulin resistance in HFD‐fed mice.284

While projects to study the effects of resveratrol on the lifespan of healthy mammals have yielded

disappointing results, the compound has been shown to reduce symptoms of aging in animal models. For instance,

resveratrol reduces inflammation, endothelial cell apoptosis, and cataract formation, while improving aortic

elasticity, motor coordination, and bone density in mice.121 Resveratrol also induces gene expression patterns

similar to those observed in CR and intermittent fasting in multiple organs and tissues. Other studies indicate that

resveratrol prevents the development of type 2 diabetes, stroke, heart failure, Alzheimer’s disease, and Parkinson’s

disease in animal models, in addition to increasing physical endurance (Table 2). Notably, resveratrol and red wine

containing equivalent amounts of resveratrol delay vascular aging and improve aerobic performance and exercise

capacity in rats, without extending lifespan.324

In humans, resveratrol produced CR‐mimetic effects in obese individuals but not in healthy individuals.325 The

changes observed in obese individuals included a reduction in resting metabolic rate as well as activation of AMPK,

increased PGC‐1α and SIRT1 protein levels, and improved mitochondrial respiration in muscles. Use of resveratrol

as an adjuvant to drug treatment in diabetic patients reduced systolic blood pressure, hemoglobin A1c, and

creatinine but failed to affect diastolic blood pressure or other metabolic markers such as fasting glucose, insulin

sensitivity, or blood lipids.326 A small trial conducted on the sirtuin‐1 activator SRT2104 suggested that the

compound may improve measures of arterial stiffness in healthy smokers and diabetic patients.327 Clinical trials are

being performed to assess the effects of drugs targeting sirtuin activities in humans.328

The NAD+ precursor nicotinamide mononucleotide (NMN; 36) reduced diabetes in aging mice.329 Another

study show that NMN increases physical endurance in old mice by activating SIRT1 in endothelial cells.277 The

effects of NMN are associated with increased muscle angiogenesis. Supplementation with nicotinamide also

improves glucose homeostasis, hepatic steatosis and inflammation in HFD‐fed mice.276 Similarly, NR increases

NAD+ levels in the body and reduces noise‐induced hearing loss330 and HFD‐induced obesity.331 Preliminary

clinical studies indicate that NR supplementation increases blood NAD+ levels and is well tolerated in

humans,332,333 paving the way for further clinical trials.

5 | REMAINING CHALLENGES

While phytochemicals have been reported to improve lifespan and delay aging in model organisms (Tables 1 and 2),

some natural substances failed to affect lifespan. For instance, curcumin and the cholesterol‐lowering drug

simvastatin (isolated from the fungus Aspergillus terreus) did not increase lifespan in genetically heterogenous

mice.122,334 Lipoic acid improved memory and learning by reducing brain oxidation levels in senescence‐prone mice

but the treatment also reduced lifespan.269 EGCG increased lifespan of worms under oxidative stress66 but failed in

normal conditions,78 suggesting that the beneficial effects of some compounds may be observed only under stress

conditions. Fish oil did not enhance lifespan in senescence‐prone mice335 and genetically heterogenous mice.336
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However, it remains unclear whether this observation may be due to the use of oxidized fish oils.337 While fish oil

shows benefits for some aging‐related disease conditions, it does not appear to improve lifespan.338

It remains to be seen whether the life extension effects of phytochemicals may be applied to healthy humans.

Many questions also remain regarding the optimal dosage, absorption, bioavailability, and efficacy of these

compounds. Given that long‐lived organisms such as humans may possess better protection mechanisms against

aging than worms, fruit flies, and mice, it is likely that the antiaging effects in humans may be more modest than in

model organisms. On the other hand, even modest improvements in lifespan and healthspan in response to natural

CR mimetics may be highly beneficial. But given that antiaging pathways are activated during CR and exercise, and

even though drugs such as rapamycin produce antiaging effects in the absence of CR, the act of overeating may

partially or entirely reverse the effects produced by natural CR mimetics or nutraceuticals. For this reason, optimal

life extension and antiaging effects may be produced by combining natural CR‐mimetic compounds with some

forms of CR, intermittent fasting, KD feeding and/or regular exercise (Figure 5).

While most of the plant and fungal compounds described here do not produce serious side effects, a few

produced unwanted toxic effects in some cases. For instance, melatonin (an endogenous hormone found in the

human body as well as in vegetables and fruits) increased lifespan in mice but it also reduced fertility and increased

tumor formation.339 Similarly, the lignan compound nordihydroguaiaretic acid (found in creosote bushes) improved

lifespan in mice but these results were associated with increased tumor formation and peritoneal hemorrhage.340

Cellular processes involved in aging including telomere shortening and senescence also protect us from cancer,341

indicating that the safety of compounds that modulate these pathways should be carefully examined. Molecules

that inhibit mTOR such as rapamycin may produce adverse effects on immune functions, insulin sensitivity, and the

gut microbiota. Some of the adverse side effects of these compounds could be diminished by varying the dosage or

frequency of use, or by chemically modifying the compounds to improve their pharmacological properties.

Many of the dietary supplements discussed here are not usually subjected to regulation for potency, safety, and

efficacy. The use of natural substances is rarely accompanied by any guarantee of purity and efficacy, and usually

no description of optimal dosage or possible side effects are provided. Producers of dietary supplements should

perform testing to determine the mechanism of action and confirm the safety, optimal dosage, and efficacy of

natural health products.33 This testing is probably the first step that needs to be taken before any of the antiaging

properties of natural health products can be considered seriously by a broader community of health care

practitioners.

F IGURE 5 Proposed molecular and cellular mechanisms involved in the antiaging effects of plant and mushroom

compounds. Antiaging interventions including calorie restriction, intermittent fasting, exercise, and calorie restriction
mimetics derived from plants and fungi modulate different molecular effectors in cells and tissues of the body. These
effects include modulation of energy levels (eg, glucose, ketone bodies, ATP/AMP, acetyl CoA, and NAD+/NADH) and

activation of transcription factors (eg, FOXO), and enzymes (eg, AMPK, mTOR, and sirtuins). In turn, cellular processes
are activated, including autophagy, stress resistance, and DNA repair, which together delay the aging process, reduce the
development of chronic disease and improve homeostasis, physical endurance, and cognitive function. AMPK,
AMP‐activated protein kinase; ATP, adenosine triphosphate; FOXO, forkhead box O; mTOR, mammalian target of

rapamycin; NAD, nicotinamide adenine dinucleotide
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Many plants and fungi consumed as foods, drinks, and spices contain antiaging molecules that prolong lifespan in

model organisms. These foods and drinks contain active compounds that modulate the same cellular and

physiological pathways affected by CR and exercise. Molecules that increase lifespan and healthspan mimic the

effects of CR, fasting, and KD, often by reducing insulin/IGF‐1 signaling and activating autophagy and other cellular

processes that increase resistance to stress (Figure 5). These plant and fungal molecules increase longevity but also

improve health and quality of life by reducing the development of chronic diseases, including cancer, cardiovascular

disease, diabetes, and neurodegeneration. Various strategies exist for use of the antiaging compounds described

here, including dietary supplementation, increasing intake of foods containing high amounts of the compounds, and/

or consuming prebiotics and probiotics that enhance blood levels of the compounds. The observation that some

nutraceuticals and natural compounds are associated with longer lifespan in humans suggests that this strategy is

feasible for delaying aging and improving healthspan. Plant and fungal compounds that possess antiaging properties

in model organisms may also lead to the identification and characterization of new bioactive compounds for the

development of improved CR mimetics to delay human aging.
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