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Review

Hormetic Effects of Phytochemicals on Health
and Longevity

Jan Martel,1,2,3 David M. Ojcius,1,2,4 Yun-Fei Ko,2,5,6 Po-Yuan Ke,7,8,9,10 Cheng-Yeu Wu,1,3,11

Hsin-Hsin Peng,1,3,12 and John D. Young1,2,3,5,6,13,*

Caloric restriction, intermittent fasting, and exercise activate defensive cellular
responses such as autophagy, DNA repair, and the induction of antioxidant en-
zymes. These processes improve health and longevity by protecting cells and or-
gans against damage, mutations, and reactive oxygen species. Consuming a
diet rich in vegetables, fruits, and mushrooms can also improve health and lon-
gevity. Phytochemicals such as alkaloids, polyphenols, and terpenoids found
in plants and fungi activate the same cellular processes as caloric restriction,
fasting, and exercise. Many of the beneficial effects of fruits and vegetables
may thus be due to activation of stress resistance pathways by phytochemicals.
A better understanding of the mechanisms of action of phytochemicals may pro-
vide important insights to delay aging and prevent chronic diseases.

Biological Stress: A Double-Edged Sword?
Aging is an inevitable process that leads to organ dysfunctions, cognitive decline, and frailty. While
death is inevitable, aging can be accelerated or delayed by lifestyle choices. For instance, com-
paredwith ad libitum feeding, reducing calories by 10–50%without incurringmalnutrition extends
lifespan in a variety of species, including yeasts, nematodes, fruit flies, mice, rats, and monkeys
[1]. Caloric restriction (CR) not only extends lifespan but also improves organ functions and re-
duces the development of common chronic diseases, including type 2 diabetes, cardiovascular
disease, and cancer [2]. Eating less may extend lifespan and prolong the health-span, producing
major health benefits.

At the cellular level, CR rejuvenates cells and organs by activating autophagy (see Glossary), a
process that removes damaged proteins and organelles in order to maintain energy levels and
homeostasis [3]. CR also increases the levels of nicotinamide adenine dinucleotide (NAD+),
which in turn leads to activation of sirtuin-1 (SIRT1), a protein deacetylase that stimulates various
cellular protective mechanisms, including autophagy and DNA repair [4]. SIRT1 activates
forkhead box O (FOXO) transcription factors and induces mitochondrial biogenesis and
expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione
peroxidase. CR induces a switch to fat metabolism and production of ketone bodies that not
only serve as a source of energy but also inhibit histone deacetylases, producing effects that
complement those of SIRT1 [5].

Long-term CR represents a biological stress that is difficult to maintain due to hunger, low energy,
irritability, social eating habits, and the pleasure of eating. Intermittent fasting, in which food is
consumedwithin a short period of time during the day, has been shown to produce effects similar
to CR [6]. Daily energy restriction for as little as 16 h improves health markers and prevents the
development of chronic diseases such as cancer, diabetes, and cardiovascular disease in animal
models [6]. Common fastingmethods include eating only onemeal per day or the 16:8method, in
which food is eaten within an 8-h window, resulting in fasting during the remaining 16 h of the day.
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In this context, an early feeding window in the morning as opposed to later in the day may provide
further health benefits by aligning food intake with the circadian rhythm and metabolism [7].
Compared with CR, intermittent fasting may be better tolerated due to reduced hunger and
higher energy levels.

In contrast to CR and intermittent fasting, cell-protective processes are inactivated in the fed state
[6]. For instance, eating is associated with cell growth, energy storage, and anabolism, processes
that inhibit protective mechanisms such as autophagy, FOXO expression, and SIRT1 activity.
Overeating and consuming a Western diet, which is high in refined sugars, animal proteins, and
energy-dense foods, are associated with weight gain, reduced longevity, and development of
chronic diseases [8,9]. There is therefore a trade-off between eating and energy storage, on
one hand, and cell-protective mechanisms induced by CR and fasting, on the other.

Exercise is another intervention that improves health and longevity and reduces the risk of cardio-
vascular disease, cognitive disorders, osteoporosis, type 2 diabetes, and cancer [10,11]. The
beneficial effects of exercise are mediated by cellular and physiological responses that increase
stress resistance in animals and humans in a manner similar to CR [12,13]. Energy depletion in
muscles and other organs during exercise leads to activation of adenosine monophosphate-
activated protein kinase (AMPK), which inhibits mammalian target of rapamycin (mTOR) and ac-
tivates autophagy. Exercise activates SIRT1 and FOXO expression, leading to improved stress
resistance [13]. Exercise also induces production of reactive oxygen species (ROS), which acti-
vate nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) and stimulate expression of endog-
enous antioxidant enzymes, thus reducing ROS levels and cellular damage [12]. Together, these
cellular processes improve health and longevity when activated on a regular basis.

The beneficial effects of CR, intermittent fasting, and exercise have been attributed to hormesis,
which posits that a biological stress that produces detrimental or toxic effects at high intensity
may be beneficial at low intensity [14] (Figure 1A). When animal and human cells are exposed
to biological stress, they respond by activating cellular and physiological processes that aim to
maintain homeostasis, a compensation mechanism that produces long-lasting, beneficial effects
[14]. The production of endogenous antioxidant enzymes induced by biological stress such as
CR protects the organism against subsequent, more intense oxidative stress or other oxidative
agents, such as heavy metals or pro-oxidant compounds, thus inducing cross-tolerance to
other stresses [15]. Some have suggested that the hormetic response may represent a general
phenomenon that occurs when cells or organisms are exposed to biological stress, including
CR and exercise, but also inorganic compounds and environmental toxins [16].

Essential nutrients such as amino acids, vitamins, and minerals also produce hormetic effects at
low and high doses, which can lead to deficiency and toxicity, respectively (Figure 1B). For exam-
ple, chronic vitamin A deficiency leads to blindness [17], while high doses produce anemia, liver
toxicity, weight loss, and bone fracture [18]. The dose or intensity of a biological stress or essential
nutrient is therefore critical to determine whether they will lead to beneficial or toxic effects.

Health and Longevity: Nature’s Way
Diet composition may also influence aging and longevity. Consumption of starchy carbohydrates
and proteins activates the insulin and insulin-like growth factor-1 (IGF-1) pathways in cells, leading
to cell growth, anabolism, and energy storage, while also inhibiting autophagy and cell-protective
mechanisms [19] (Figure 2). Consistent with this observation, a low glycemic diet improves
insulin sensitivity and extends lifespan in mice, even when the diet is initiated late in life [20].
Similarly, a low-protein diet improves cardiometabolic health markers and extends longevity
in ad libitum-fed mice by reducing hepatic mTOR activation [21]. Reduced protein intake
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from meat and animal products is also associated with improved health and longevity in
humans [22].

Consumption of a diet rich in fruits and vegetables, which reduces the risk of cardiovascular dis-
ease, cancer, and neurodegeneration, also improves overall health and longevity in humans
[23–25]. The beneficial effects of fruits and vegetables on health and longevity may be explained
in various ways. Vegetables tend to be low in simple sugars and proteins, which may delay aging
by preventing activation of insulin and IGF-1 pathways. Fruits and vegetables contain dietary fiber,
which is not found in other foods; dietary fiber produces a wide range of health benefits, from
reducing appetite, weight gain, chronic inflammation, and insulin resistance, to modulation of
the gut microbiota and the immune response [26]. Consumption of high amounts of fruits and
vegetables may also reduce intake of energy-dense and processed foods. Importantly, the ben-
efits of fruits and vegetables have been attributed to their antioxidant effects and the neutralization
of ROS [27]. ROS form as byproducts of energy production in mitochondria and can damage
various cellular macromolecules, contributing to organ dysfunctions and aging.

Glossary
Alkaloids: plant compounds that
contain nitrogen-containing functional
groups.
Autophagy: cellular process in which
damaged proteins and dysfunctional
organelles are degraded in intracellular
vesicles that fuse with lysosomes. This
process is activated by exercise or
fasting and is associated with beneficial
antiaging effects on cellular functions.
Gut dysbiosis: imbalances in the
composition of the gut microbiota
associated with negative effects on
health.
Hormesis: differential response of cells
and the human body to different
concentrations of a bioactive compound
or stress, inwhich a low intensity/dose of
biological stress induces stress
resistance mechanisms and health
benefits, whereas a high intensity/dose
of the same biological stress produces
detrimental effects on health and
longevity.
Nutraceuticals: combination of the
terms ‘nutrient’ and ‘pharmaceutical’,
usually used to designate a chemical
compound isolated from food sources
and that may produce health benefits.
Phytochemicals: small organic
compounds usually produced by plants
as a defense mechanism against
biological stress; these compounds are
not directly involved in the growth,
development, or reproduction in plants
and are thus classified as secondary
metabolites; major classes include
alkaloids, polyphenols, and terpenoids.
Polyphenols: chemical compounds
that contain phenol functional groups
and are produced as secondary
metabolites by plants.
Polysaccharides: molecules found in
plants and fungi consisting of
carbohydrate monomers linked by
glycosidic bonds. Polysaccharides such
as starch are hydrolysable by human
digestive enzymes and provide a source
of energy, while other polysaccharides
are not digested (e.g., resistant starch,
cellulose, pectins, β-glucans); the latter
category may be converted into
short-chain fatty acids by the gut
microbiota, providing energy and
producing systemic effects on the host.
Prebiotics: compounds that produce
beneficial health effects in humans by
inducing the growth of specific bacterial
species in the gut.
Probiotics: live microorganisms that
produce beneficial health effects in
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Figure 1. Hormetic Effects of Biological Stress and Essential Nutrients on Health and Longevity. (A) Biological
stress such as caloric restriction, intermittent fasting, and exercise may be detrimental, toxic, or even fatal at high intensity.
However, at low intensity, biological stress produces beneficial effects on physiological functions by activating resistance
pathways such as autophagy, DNA repair, mitochondrial biogenesis, and expression of antioxidant enzymes. Image
adapted from Calabrese et al. [97], with permission from Elsevier. (B) Essential nutrients such as amino acids, vitamins,
and minerals maintain body functions when available within the range of physiological concentrations. However, essential
nutrients may also affect physiological responses at low and high concentrations, resulting in deficiency and toxicity,
respectively. Image adapted from Eaton and Gilbert [98], with permission from McGraw-Hill Education.
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Yet, several lines of evidence indicate that fruits and vegetables may not act primarily by scaveng-
ing ROS. For instance, people who regularly consume antioxidant supplements such as vitamins
A and E and beta-carotene have a slightly higher mortality risk compared with nonusers [28].
Moreover, a combination of vitamins C and E at high doses (i.e., approximately 11 and
18 times the daily recommended allowance for vitamin C and E, respectively; doses that may
be obtained by supplementing with the pure vitamins, but not with commonmultivitamins) reduce
the beneficial effects of exercise on insulin sensitivity and ROS levels in human subjects [29]. While
ROSmay contribute to aging by inducing cellular damage, they also play an important role asme-
diators of cell-signaling pathways, and blocking their action with high doses of antioxidants may
not necessarily improve health and longevity.

Vegetables, fruits, and mushrooms contain a wide range of phytochemicals that may be re-
sponsible for the beneficial effects observed on health and longevity. Phytochemicals, which in-
clude alkaloids, polyphenols, and terpenoids, are organic compounds that are not directly
involved in the growth, development, or reproduction of plants or fungi, and are thus classified
as secondary metabolites. Many of the beneficial effects of fruits and vegetables on chronic dis-
eases and longevity in humans have been attributed to specific phytochemicals found in these
foods. For instance, high polyphenol intake is associated with reduced overall mortality in humans
[30–32]. Similarly, flavonoid consumption is inversely correlated with coronary heart disease [33]
and dementia [34]. Consumption of coffee, possibly the highest source of polyphenols in the
human diet, is also associated with reduced mortality [35,36]. The Mediterranean diet is associ-
ated with reduced incidence of chronic diseases, an observation that has been attributed at
least in part to its high polyphenol content [37].

Many plant and fungal compounds, including berberine, curcumin, fisetin, quercetin, and resver-
atrol, can extend lifespan and health-span in model organisms such as yeasts, nematodes, fruit
flies, and rodents [19] (Table 1). These phytochemicals, many of which are available as dietary
supplements (Box 1), activate the same metabolic pathways and cellular processes as CR, inter-
mittent fasting, and exercise. For instance, some phytochemicals reduce ROS levels by activating
Nrf2, which in turn induces expression of antioxidant enzymes. Epigallocatechin gallate (EGCG), a
polyphenol found in green tea, produces neuroprotective effects in a rodent model of cerebral is-
chemia injury by activating the Nrf2 pathway [38]. Sulforaphane, an isothiocyanate compound
found in broccoli and cabbage, also protects rats against hypoxia-induced brain injury by induc-
ing the Nrf2 pathway and the expression of antioxidant enzymes [39].

Phytochemicals may also produce antiaging effects by inducing autophagy [40]. Coffee polyphe-
nols activate autophagy in the liver, muscles, and heart of mice [41]. Resveratrol, a widely studied
polyphenol found in grapes and red wine, reduces accumulation of amyloid-beta protein in the
brain by activating AMPK and autophagy in a mouse model of Alzheimer’s disease [42].
Curcumin, a polyphenol compound found in Indian curry, improves heart function by inducing
autophagy in a mouse model of diabetic cardiomyopathy [43]. A recent study showed that the
flavonoid 4,4′-dimethoxychalcone isolated from the plant Angelica keiskei koidzumi induces au-
tophagy and extends lifespan in yeasts, nematodes, and fruit flies [44]. The chalcone compound
also protects mice against myocardial ischemia by inducing autophagy [44]. Other dietary
polyphenols that stimulate autophagy include quercetin (a polyphenol found in fruits and
vegetables), genistein (a polyphenol found in soybeans and coffee), EGCG, and silibinin [a mixture
of flavonolignans from milk thistle, a plant used in traditional Chinese medicine (TCM) to protect
the liver] [40].

Compounds that activate AMPK represent potential candidates for the development of antiaging
agents. Metformin, an antidiabetic drug that is being considered as an antiaging intervention in

humans by colonizing the gut or
restoring a healthy composition of the
gut microbiota.
Terpenoids: large class of fragrant
hydrocarbon compounds derived from
natural sources. They usually contain a
multicyclic structure with
oxygen-containing functional groups.
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Sedentariness,

Figure 2. Molecular Pathways and Cellular Processes Involved in the Antiaging Effects of Exercise, Intermittent Fasting, and Phytochemicals in Animals and Humans. Sedentariness,
overeating, and foods containing sugars and proteins induce the release of insulin and insulin-like growth factor-1 (IGF-1) into the blood, leading to activation of mammalian target of rapamycin (mTOR), cell
growth, energy storage, and anabolic reactions in cells. These processes are needed for body development and maintenance, but they may induce cellular damage and premature aging if continually
activated. However, exercise, intermittent fasting, and phytochemicals activate adenosine monophosphate-activated protein kinase (AMPK) and SIRT1, leading to induction of molecular pathways and
cellular processes that reduce cellular damage, aging, and the development of chronic diseases. Not shown here is the fact that mTOR activation inhibits autophagy, FOXO, and Nrf2, thus inhibiting cell-
protective mechanisms. Abbreviations: FOXO, forkhead box O; Nrf2, nuclear factor (erythroid-derived 2)-related factor 2; PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1α.
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healthy humans, also inhibits the electron transport chain and leads to AMPK activation [45].
Metformin may have antiaging effects in humans as diabetic individuals taking metformin appear
to live longer than nondiabetic individuals [46]. Similarly, emodin, an anthraquinone derivative
compound isolated from rhubarb, which has been used in TCM herbal preparations to treat
fever, constipation, and pain, inhibits the electron phosphorylation chain, activates AMPK, and
improves glucose tolerance in mice [47].

The alkaloid compound berberine extends lifespan and locomotor activity in fruit flies exposed to
high temperature [48]. Similarly, the terpenoid compound antcin M, a steroid-like compound iso-
lated from the mushroom Antrodia cinnamomea, extends lifespan in nematodes [49]. Antcin M
was found to activate Nrf2 and SIRT1 in human fibroblasts, protecting the cells against
glucose-induced oxidative stress [49]. Artemisinin, a sesquiterpenoid lactone possessing antima-
laria activity and isolated from a plant used in TCM, was found tomimic CR by inducingmitochon-
drial biogenesis in mouse skeletal muscles [50].

While phytochemicals have received attention mainly for their antioxidant properties, they appear
to produce antiaging effects and provide health benefits by activating stress resistance and cell-
protective mechanisms in human cells.

Phytochemicals and the Hormesis Response
Many phytochemicals produce a biphasic, hormetic response on physiological functions, in
which beneficial effects are observed at low doses, whereas detrimental effects are produced

Table 1. Plant and Fungal Molecules That Produce Hormetic Effects on Health and Longevity in Model Organisms and Humans

Compound Source Mechanism Major finding Refs

Berberine Chinese goldthread,
dietary supplement

Autophagy↑ Lifespan↑ in flies; improvement of T2DM markers in humans [48,99,100]

Curcumin Turmeric spice, dietary
supplement

Autophagy↑ Lifespan↑ in fruit flies (but failed to affect lifespan in mice);
inflammation↓, hypertension↓ and ROS↓ in humans

[40,43,101–103]

Caffeine Coffee AMPK↑, mTOR↓,
autophagy↑

Lifespan↑ in nematodes; CVD↓, cognitive impairment↓ and
mortality↓ in humans

[35,104,105]

EGCG Green tea, dietary
supplement

SIRT1↑, FOXO↑,
autophagy↑, Nrf2↑

Lifespan↑ in rats; cardiovascular disease↓, cancer↓, and
neuroprotection↑ in humans

[38,40,106,107]

Emodin Plants Sir2.1↑, AMPK↑ Lifespan↑ in nematodes; insulin sensitivity↑ in mice [47,108]

Fisetin Fruits, vegetables DAF-16/FOXO↑,
ROS↓, CRP↓

Lifespan↑ in nematodes; inflammation↓ in humans [109,110]

Glucosamine Dietary supplement AMPK↑, autophagy↑ Lifespan↑ in nematodes and mice; mortality↓ in humans [78–81]

Polyphenols Coffee AMPK↑, mTOR↓,
autophagy↑

CVD↓, cognitive impairment↓, and mortality↓ in humans [35,41,105]

Polysaccharides Ganoderma lucidum
and Hirsutella sinensis

Prebiotic, intestinal
integrity↑

Obesity↓, inflammation↓, diabetes↓ in HFD-fed mice [90,91]

Quercetin Vegetables, dietary
supplement

AMPK↑, autophagy↑,
senescence↓

Lifespan↑ in mice; hypertension↓ in humans [40,111,112]

Resveratrol Red wine, dietary
supplement

IGF-1↓, AMPK↑,
PGC-1α↑,
autophagy↑

Lifespan↑ in HFD-fed mice; improved markers for Alzheimer’s
disease, cancer, CVD, T2DM in humans

[40,113,114]

Spermidine Soybeans, natto, fungi Autophagy↑ Lifespan↑ in mice; mortality↓ in humans [82,83,115]

Sulforaphane Broccoli, Brussels
sprouts

Nrf2↑, antioxidant
enzymes↑

Neuroprotection↑ in rats [39]

Abbreviations: AMPK, adenosine-monophosphate-activated protein kinase; CRP, C-reactive protein; CVD, cardiovascular disease; EGCG, epigallocatechin gallate; FOXO, forkhead box
O; HFD, high-fat diet; IGF-1, insulin-like growth factor-1; mTOR, mammalian target of rapamycin; Nrf2, nuclear factor (erythroid-derived 2)-related factor 2; PGC-1α, peroxisome
proliferator-activated receptor γ coactivator 1α; ROS, reactive oxygen species; SIRT1, sirtuin-1; Sir2.1, sirtuin-2.1; T2DM, type-2 diabetes mellitus.

Trends in Endocrinology &Metabolism

340 Trends in Endocrinology & Metabolism, June 2019, Vol. 30, No. 6



at high doses (Figure 1A). For instance, a low dose of sulforaphane (1 μM) protects mesenchymal
stem cells against oxidative stress and apoptosis, while a higher dose of the compound (20 μM)
induces DNA damage and cytotoxic effects, leading to cell cycle arrest and apoptosis [51].
Similarly, a low dose of resveratrol (2 mg/kg) reduces indomethacin-induced stomach ulcers
and inflammation in mice, whereas higher doses (5 and 10 mg/kg) increase ulcer formation and
markers of inflammation [52]. The dose of phytochemicals thus determines whether these
compounds produce beneficial or toxic effects.

Phytochemicals are xenobiotic compounds that are absorbed at low levels and are metabolized
by detoxifying enzymes before being excreted. The concentration of sulforaphane metabolites
usually found in the blood 8 h after eating 200 g of fresh broccoli is within the low micromolar
range (~1 μM) [53]. After drinking a cup of coffee, ~25% of chlorogenic acid polyphenols initially
found in the beverage are absorbed and can be detected in the blood or urine, mostly in the form
of sulfated metabolites [54]. Following a single dose of 20 mg/kg of green tea, the polyphenols
EGCG, epigallocatechin, and epicatechin reach peak concentrations of 78, 223, and 124
ng/ml in human blood 1 h and 30 min after intake [55]. A large fraction of polyphenols (90%) is
removed from the circulation within 8 h, but considerable variation in metabolism is observed
between individuals [55]. The low absorption and bioavailability of many phytochemicals in vivo
has been cited as a reason against their possible beneficial effects on health. Yet, the low
bioavailability of phytochemicals is consistent with the concept that these molecules may
produce beneficial, hormetic effects at low doses.

Many phytochemicals may also be consumed at every meal, several times per day, thus increas-
ing the possibility of accumulating or repeatedly producing beneficial effects on physiological
functions. Some phytochemicals such as resveratrol are also highly promiscuous and have
many molecular targets [56], possibly also enhancing their advantage. For phytochemicals that
are found at low levels in the diet, increasing their level in the plants that produce these

Box 1. Dietary Supplements to Delay Aging?

At least half of Americans regularly consume dietary supplements and nutraceuticals such as multivitamins, minerals,
and herbal extracts to maintain health and vitality [66]. Many dietary supplements are effective in humans, including those
against immune-related disorders [67] and obesity [68]. Folic acid is recommended during pregnancy to prevent neural
tube defects and reduce neonatal mortality [69], while dietary fiber supplements improve glycemic control and should
be considered for patients with type 2 diabetes [70]. Other dietary supplements have produced mixed results. For in-
stance, it remains unclear if multivitamin users have a lower incidence of cancer [71,72]. As noted by other authors [73]
and consistent with the hormetic response to essential nutrients (Figure 1B), multivitamins may be effective only in people
who show nutritional deficiencies. Instead of serving as substitutes for good lifestyle habits, it seemsmore likely that dietary
supplements should be used in combination with regular exercise and a healthy lifestyle to improve health and longevity.
Many clinical trials have evaluated dietary supplements only for a short period and on a small sample of subjects. Contrary
to common beliefs, herbal supplements are not necessarily safe. Some herbal supplements contain carcinogens such as
aristolochic acid, which has been implicated in cases of urothelial cancer [74]. We proposed earlier that manufacturers of
dietary supplements need to safeguard the public and provide information about the composition, quality, efficacy, and
safety of their products [75].

Dietary supplements may also delay aging and prolong lifespan [19]. A mixture of vitamins and dietary supplements ex-
tends lifespan and delays cognitive decline in transgenic mice that overexpress the growth hormone [76,77]. Glucosamine,
a monosaccharide typically used to prevent cartilage loss, extends the lifespan of oldmice by inducing oxidative stress and
mitochondrial biogenesis [78]. An inhibitor of glycolysis, glucosamine reduces ATP production, leading to AMPK activation
and induction of autophagy, as shown in nematodes [79]. Surprisingly, regular users of glucosamine supplements live
longer than nonusers [80,81], suggesting possible antiaging effects in humans.

The polyamine spermidine is also considered as a dietary supplement to delay aging. It is found in human cells but also in
mushrooms, aged cheese, and soybeans (notably in natto, a fermented soybean preparation from Japan). Experimental
evidence indicates that spermidine extends lifespan in mice [82]. Moreover, people who have high nutritional intake of
spermidine also tend to live longer [83].
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compounds may also be beneficial (Box 2). Some foods enhance the bioavailability of phyto-
chemicals in human subjects. For instance, the alkaloid compound piperine from black pepper
enhances the bioavailability of curcumin from Indian curry [57], while salad dressings containing
fat increases the bioavailability of carotenoids from salads [58]. From another point of view, it is
important to note, however, that phytochemicals do not necessarily need to be absorbed to pro-
duce beneficial effects on the human body (Box 3).

Careful observations of a large number of hormetic responses in different studies indicate that the
level of beneficial response produced by a single biological stress on animal and human cells is
usually around 20–25% above that of control, which is established at 100% [59]. This observation
suggests that there might be an upper limit to the beneficial stimulatory effect produced by bio-
logical stress, which may depend on the compensatory mechanisms in place to maintain homeo-
stasis. Still, repeated stimulations with the same biological stress at low doses increase the
beneficial effects observed to 60–90% above control [59]. From a mechanistic point of view,
timing of stimulation and measurements thus becomes important and may play a role in
assessment of the antiaging effects produced by phytochemicals.

A combination of biological stresses such as exercise, intermittent fasting, and phytochemical in-
take may produce additive or synergistic effects on health and longevity. In obese rats, a regimen
of exercise and intake of grape polyphenols for 8 weeks produces synergistic effects on insulin
resistance and endurance by promoting muscle lipid oxidation instead of glycogen use [60]. Sim-
ilarly, mice fed a diet rich in fruits and vegetables show increased AMPK, SIRT1, and peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α) activities in muscles, and display in-
creased strength and endurance compared with control mice fed a regular chow diet [61].
While additive and synergistic effects appear possible, observations of hormetic responses
across studies suggest that the maximal level of additive or synergistic effects may still lie within
the limit of 20–90% above control [59,62].

While phytochemicals produce beneficial hormetic effects that delay aging and reduce chronic
diseases, a major drawback of compounds that induce autophagy is that theymay induce exces-
sive cell death and apoptosis at high doses [63]. Another possible concern is that cancer cells

Box 2. Boosting Up Levels of Phytochemicals in Vegetables

Phytochemicals are secondary metabolites produced when plants are exposed to stress, such as in conditions of low wa-
ter availability, high or low temperatures, UV irradiation, and lack of nutrients. Phytochemicals are also produced in re-
sponse to assault by insects and herbivores. For instance, levels of the polyphenol resveratrol increase in grape skin
when the vine is infected with fungi [84]. Phytochemicals are believed to offer protection against stress and act as deter-
rents for insects and herbivores. A well-known example of a phytochemical deterrent is capsaicin, a pungent compound
found in chili that may discourage herbivores from eating the plant by producing the burning sensation in the mouth.
Obviously, this strategy has backfired when we consider people who wait in line at a restaurant to enjoy spicy foods.

For some phytochemicals, such as resveratrol, which shows relatively low concentrations in grapes and poor bioavailability
in humans, interventions that increase their levels in plants may be beneficial. Notably, levels of phytochemicals are esti-
mated to be 10–50% higher in organic vegetables compared with vegetables obtained by conventional farming [85,86].
For instance, organic wines contain more total polyphenols and resveratrol than conventional table wines [87]. Similarly,
soups prepared from organically grown vegetables contain almost six times higher levels of salicylic acid than soups pre-
pared from nonorganic ingredients [88]. Elicitors such as fungi, UV light, and cold temperatures increase the level of poly-
phenols in wines, while nitrogen-containing fertilizers reduce their content [84].

Activating stress resistance pathways and increasing phytochemical productionmay thus increase phytochemical levels in
fruits and vegetables, possibly enhancing health benefits for consumers. While increasing the levels of phytochemicals in
fruits and vegetablesmay be beneficial in some cases, very high levels of the same compoundsmay reduce their beneficial
effects or even induce toxicity. Selecting fruits, vegetables, and mushrooms containing phytochemicals at levels that fall
within the hormetic response is needed to produce health benefits.
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show increased proliferationwhen stimulatedwith low doses of hormetic phytochemicals such as
resveratrol, whereas higher doses reduce proliferation [64]. In this context, cellular processes that
are protective against aging such as autophagy may provide a proliferative advantage for cancer
cells [65]. Determining the possible effects of dietary phytochemicals during cancer treatment and
establishing optimal dosage of anticancer agents will represent major challenges.

Concluding Remarks and Future Perspectives
It is becoming clear that aging can bemodulated by biological stresses such as exercise, intermit-
tent fasting, and phytochemicals, which induce protection against cellular damage. These cell-
protective mechanisms are inactive in the fed state, which instead promotes energy storage
and anabolism. Overeating and consumption of energy-rich foods promote aging and the devel-
opment of chronic diseases by preventing activation of autophagy, DNA repair, and expression of
antioxidant enzymes. In view of this apparent trade-off, it appears that phytochemicals could

Outstanding Questions
What is the optimal dose, mode of ad-
ministration, and frequency of use of
phytochemicals to produce optimal ef-
fects on health and longevity?

How does interindividual genetic,
epigenetic, and gut microbiota variability
influence the effects phytochemicals?

Can dietary supplements containing
phytochemicals produce beneficial ef-
fects on health and longevity in healthy
individuals or in sedentary subjects who
consume a high-calorie diet?

Can modulation of stress resistance
pathways be used to identify novel phy-
tochemicals or derived compounds that
produce beneficial effects on health and
longevity?

Box 3. Dietary Fiber, Phytochemicals, and the Gut Microbiota

An unexpected association between phytochemicals and the gut microbiota was revealed in recent studies. Many plant
and fungal polysaccharides are not digested by human digestive enzymes, resulting in poor absorption in the small in-
testine. These polymers are found in high amounts in plants and mushrooms, and may improve health and longevity by
modulating the composition and activities of the gut microbiota [68]. The gut microbiota is involved in many physiological
functions, including vitamin production, energy regulation, and toxin neutralization [89]. The observation that the gut
microbiota is disturbed in obesity, diabetes, and cancer (a condition called gut dysbiosis) has led to the development
of prebiotics and probiotics to restore a healthy gut microbiota.

We have shown that fractions containing high-molecular-weight polysaccharides (N300 kDa) isolated from Ganoderma
lucidum and Hirsutella sinensis mycelium reduce body weight, inflammation, and insulin resistance in mice fed with a
high-fat diet (HFD) [90,91]. Fecal transplantation indicated that the effects of the polysaccharides were mediated at least
in part by the gut microbiota. Accordingly, the polysaccharide fraction increased the abundance of the gut commensal
Parabacteroides goldsteinii, and oral intake of this bacterium produced antiobesity effects in HFD-fedmice similar to those
produced by polysaccharides [91].

Our work also highlighted the concept that a HFD induces intestinal permeability and leads to endotoxemia in mice, a sit-
uation in which lipopolysaccharides found in intestinal bacteria enter the blood and cause chronic inflammation and insulin
resistance [90,91]. Notably, the polysaccharides isolated from fungi enhanced expression of gap junction proteins in intes-
tinal tissues, thus improving intestinal integrity and preventing endotoxemia. Dietary fiber may thus help to prevent the det-
rimental effects of a HFD, an observation that in a way shifts the focus away from the role of lipids in this context.

Polysaccharides that reach the colonmay also be converted into short-chain fatty acids (SCFAs) by the gut microbiota and
produce beneficial effects by serving as energy source for intestinal cells. SCFAs are also absorbed and act systemically in
the host by producing anti-inflammatory effects [68,92]. These compounds have been shown to induce production of glu-
cagon-like peptide-1 (GLP-1) by intestinal cells, leading to reduced appetite and improved insulin sensitivity [68]. SCFAs
also reduce lipid accumulation in adipocytes, hepatocytes, and muscle cells, and may contribute to improving intestinal
integrity.

Polyphenols found in the diet have also been shown to modulate the composition of the gut microbiota. A polyphenol-rich
cranberry extract induces the growth of beneficial commensal bacteria such as Akkermansia muciniphila, and these pre-
biotic effects are associated with reduction in body weight, oxidative stress, and intestinal and hepatic inflammation as well
as improved insulin sensitivity in mice fed with a diet rich in fat and sucrose [93]. Resveratrol increases expression of tight
junction proteins in the intestine, and it also produces prebiotic effects by reversing HFD-induced dysbiosis in mice [94].
Other phytochemicals such as quercetin, EGCG, and ginsenosides (i.e., steroid glycosides and terpenoid saponins iso-
lated from ginseng) modulate the gut microbiota in a similar fashion [95].

Phytochemicals may also be converted by the gut microbiota into other metabolites. For instance, the gut microbiota con-
verts quercetin into various metabolites that are absorbed into the blood and may produce beneficial effects on the host
[95]. Similarly, unabsorbed green tea polyphenols are converted by the gut microbiota to increase vitamin production
(niacin) and reduce carbohydrates and bile acid metabolites in rats, observations that are consistent with the antiobesity
effects of these compounds [96]. Given that this conversion is produced by specific bacteria, it is possible that the activities
of phytochemicals may be influenced by antibiotic and probiotic intake and the diet, a research area with many promising
applications.
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produce some beneficial health effects in overfed and sedentary individuals. But optimal health
benefits may be produced by combining phytochemical intake with exercise and intermittent
fasting. Finding ways to activate antiaging pathways while regulating energy levels and anabolic
processes appears to be critical to promote health and longevity.

The observation that phytochemicals in fruits, vegetables, and mushrooms activate stress resis-
tance has many practical implications. For one, high doses of antioxidant vitamins may inhibit the
hormesis response and prevent the beneficial effects of exercise, fasting, and phytochemicals.
The Mediterranean diet offers an instructive example of phytochemical intake that is associated
with many health benefits. Further research is needed to determine the optimal dosage and fre-
quency of use of phytochemicals consumed in food or as dietary supplements (see Outstanding
Questions). In addition, a better understanding of the interactions between phytochemical intake
and other antiaging interventions such as exercise and intermittent fasting, which activate the
same stress-related pathways, is needed. It appears likely that a period of rest between phyto-
chemical intake may be beneficial by allowing anabolic processes and cellular functions to adjust,
similar to what is usually recommended for exercise.

The concept of hormesis also has implications for the identification of new antiaging compounds
and testing in human clinical trials. New antiaging compounds can be identified by using assays
that monitor stress resistance pathways in cells and organisms. In clinical trials, various doses of
each compound should be tested to delineate the hormetic zone of responses. In addition, inter-
individual variations in terms of drug metabolism, bioavailability, and functional response may re-
quire personalization of doses for each compound.

The existence of antiaging pathways in human cells offers the possibility to prevent and treat
many chronic diseases simultaneously, instead of treating one at a time. Given that effective treat-
ments are not available for many chronic diseases, including cardiovascular and neurodegener-
ative diseases, the possibility to prevent such ailments using antiaging interventions such as
exercise, intermittent fasting, and phytochemicals becomes even more appealing. Moreover, an-
tiaging interventions such as exercise and phytochemical intake are associated with improved
organ function, providing the opportunity to maintain cognitive functions, exercise performance,
and well-being.
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