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Gut barrier disruption and chronic disease
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Maintenance of gut barrier integrity is in-
dispensable for health as the gut barrier
protects the host against gut microbes,
food antigens, and toxins.

Many factors such as enteric infection,
antibiotics, low-fiber diets, circadian
rhythm disruption, and psychological
stress can affect gut barrier integrity and
lead to systemic, low-grade inflammation
due to translocation of bacteria and their
components.
The intestinal barrier protects the host against gut microbes, food antigens, and
toxins present in the gastrointestinal tract. However, gut barrier integrity can be
affected by intrinsic and extrinsic factors, including genetic predisposition, the
Western diet, antibiotics, alcohol, circadian rhythm disruption, psychological
stress, and aging. Chronic disruption of the gut barrier can lead to translocation
of microbial components into the body, producing systemic, low-grade inflam-
mation. While the association between gut barrier integrity and inflammation in
intestinal diseases is well established, we review here recent studies indicating
that the gut barrier and microbiota dysbiosis may contribute to the development
of metabolic, autoimmune, and aging-related disorders. Emerging interventions
to improve gut barrier integrity and microbiota composition are also described.
While the body can resist transient
gut barrier disruption, it may be over-
whelmed by mild insult due to genetic
predisposition, chronic stress, and
aging, which may contribute to the de-
velopment of autoimmune, metabolic,
and mental health disorders.

Consideration of the various intrinsic and
extrinsic factors that affect gut barrier in-
tegrity and microbiota composition is
needed to maintain or restore human
health.
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Structure and function of the gut barrier
Maintenance of epithelial and endothelial barriers in the gut, skin, blood vessels, respiratory tract,
and the brain is critical for human health [1]. The intestine forms the largest and one of the most
important internal barriers in the body as it protects the host from noxious substances and mi-
crobes present in the gut lumen. The gut barrier consists of themucus layer, commensal bacteria,
epithelial cells, and immune cells residing in the lamina propria (see Glossary) (Figure 1A). In the
intestinal epithelium, goblet cells secrete mucus glycoproteins that prevent direct contact be-
tween gut microbes and colonocytes [2], while themucus in the small intestine is loose and allows
passage of bacteria [3]. In the small intestine, Paneth cells secrete antimicrobial proteins that can
specifically lyse bacterial cells [4]. In the lamina propria, B cells secrete IgA that can bind to bac-
teria and their toxins to prevent their translocation into the body [5].

Commensal microbes of the gut microbiota help to maintain gut homeostasis in various ways
(Figure 1A). For instance, they oppose colonization by pathogens [6] and promote differentiation
of regulatory T (Treg) cells, which induce tolerance to lumen antigens [7]. When sequestered into
the lumen,microbe-associated molecular patterns (MAMPs) such as flagellin, lipopolysac-
charide (LPS), and peptidoglycan strengthen the gut barrier by binding to Toll-like receptors
(TLRs) on the apical surface of intestinal cells to induce production of antimicrobial proteins [5].
Commensal bacteria can induce the production of mucus from goblet cells by activating interleukin
(IL)-22 secretion by innate lymphoid cells [8]. Commensals also convert dietary fiber into short-
chain fatty acids (SCFAs), which protect the gut barrier in various ways, including by providing
energy for colonocytes and stimulating the production of mucus, antimicrobial proteins, and
Treg cells [5]. Depletion of commensals and their replacement by pathogens, a condition termed
dysbiosis, may therefore affect the gut barrier and produce detrimental effects on the host
(Figure 1B–F).

Absorption of nutrients and water by the intestine can occur via the transcellular and paracellular
pathways (Figure 2). Intestinal cells are linked by a series of proteins forming junctional complexes
consisting of tight junctions, adherens junctions, and desmosomes, allowing absorption of water
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and small solutes (<8 Å) via the ‘pore’ pathway [9,10]. Transient and reversible rearrangement of
the actin cytoskeleton and tight junctions allows passage of larger molecules (<100 Å) via the
‘leak’ pathway [9,10] (Figure 2). For instance, activation of glucose-Na+ co-transport following
food intake increases the leak pathway [11], which enhances absorption of food nutrients but
also small food antigens and MAMPs (Figure 2). Proinflammatory cytokines such as tumor-
necrosis factor-alpha (TNF-α) [12] can also activate the leak pathway and cause diarrhea,
which may help to expulse proinflammatory stimuli into the gut lumen. Intestinal erosion, ulcera-
tion, and epithelial cell death may allow larger particles, including MAMPs and bacteria, to
unrestrictedly cross the intestinal epithelium and induce inflammation [9] (Figure 2).

Effect of gut barrier dysfunction on intestinal diseases
Gut barrier dysfunction is involved in intestinal diseases such as enteric infections, intestinal
bowel disease (IBD), and celiac disease [13]. For example, pathogenic bacteria and viruses
such as Salmonella and rotaviruses can breach the intestinal epithelium and alter tight junc-
tions, causing diarrhea via water and electrolyte loss into the gut lumen [14,15] (Figure 1B).
Gastrointestinal infections can lead to bacterial translocation to the gut mucosa (Figure 1B),
producing inflammation that further increases gut barrier dysfunction and may result in a
vicious cycle [16].

IBD, which consists of Crohn’s disease and ulcerative colitis, is characterized by excessive im-
mune reaction towards the gut microbiota and mucosa of the small and large intestine, respec-
tively. More than 200 single nucleotide polymorphisms (SNPs) in various genes coding for
NOD-like receptors (NLRs), antimicrobial proteins, and cytokines have been implicated in IBD
[17]; however, only a fraction of ulcerative colitis subjects have a family history of IBD [18], indicat-
ing the importance of environmental triggers. Mice that lack the major mucus glycoprotein,
mucin-2, show gut barrier dysfunction and spontaneously develop colitis and colorectal cancer
[19,20], illustrating the role of mucus in maintaining homeostasis [21]. Moreover, mice fed a
high-glucose diet develop more severe dextran sodium sulfate (DSS)-induced colitis than con-
trols due to increased mucolytic bacteria in the gut and reduced mucus barrier, leading to bacte-
rial translocation to the lamina propria [22] (Figure 1B). In humans, weakening of the colonic
mucus barrier is an early event in the development of ulcerative colitis [23] and bacterial DNA is
increased in the blood of IBD subjects compared with healthy controls [24]. The development
of IBD is therefore associated with genetic and environmental factors that lead to intestinal ero-
sion and inflammation in susceptible individuals.

Celiac disease is a well-known condition involving gut barrier disruption. In this disease, gluten
from wheat and other grains has been identified as the environmental trigger of autoimmune re-
actions in genetically susceptible individuals (Table 1). Gliadin proteins found in gluten induce the
release of the protein zonulin from the gut epithelium [25] (Figure 1B). Zonulin is a mammalian
ortholog of the zonula occludens toxin (Zot) from the cholera pathogen Vibrio cholerae. Similar
to the cholera toxin, zonulin induces tight junction disassembly and increases gut permeability
to peptides larger than three amino acids [25]. Celiac patients harbor SNPs in various genes, in-
cluding human leukocyte antigens (HLAs) (e.g., HLA-DQ2 and HLA-DQ8) that render gliadin pep-
tides capable of activating T cells and inducing autoimmune reactions [26]. In addition, increased
gut permeability and antibodies against LPS and flagellin have been observed in people with non-
celiac gluten sensitivity [27], whichmay involve SNPs in non-HLA genes [26]. Given the difficulty in
identifying gluten sensitivity and the observation that gliadin can induce the release of zonulin even
in healthy individuals [25], it is likely that gluten sensitivity is more prevalent than presently recog-
nized. A combination of genetic and environmental factors thus affects gut barrier integrity and is
involved in the development of intestinal diseases.
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Glossary
Dysbiosis: imbalance in the
composition of the gut microbiota
characterized by the reduction of
commensal microbes and increase of
opportunistic or pathogenic microbes.
This condition is usually associated with
increased gut permeability and
inflammation.
Endotoxemia: low-grade systemic
inflammatory condition caused by
translocation of lipopolysaccharide from
intestinal Gram-negative bacteria into
the circulation. Endotoxemia is likely
involved in the pathogenesis of
cardiovascular disease, obesity, and
type 2 diabetes.
Hemoglobin A1c: a form of
hemoglobin that is bound to sugar when
the glycemia is excessively high for an
extended period of time. This glycated
protein is used as a marker for diabetes
and correlates with diabetic
complications such as cardiovascular
disease, kidney disease, erectile
dysfunction, and neuropathy.
Hormesis: biphasic dose response
produced by stress such as exercise,
intermittent fasting, phytochemicals, and
heat on biological organisms. Hormetic
responses are usually characterized by
beneficial effects at low doses/intensity
and detrimental or toxic effects at high
doses/intensity.
Lamina propria: a thin layer of
connective tissue found in the various
mucosa of the human body, including in
the gastrointestinal tract.
Microbe-associated molecular
patterns (MAMPs): microbial
molecules such as flagellin,
lipopolysaccharide, and peptidoglycan
that are produced by microbes and can
be recognized by innate immune cells of
the host. Within the gut lumen, MAMPs
improve gut barrier function by promot-
ing production of mucus, antimicrobial
proteins, IgA, and regulatory T cells, but
they can also induce inflammation if they
translocate into the body through the
intestinal epithelium.
Vagus nerve: tenth cranial nerve
involved in the parasympathetic control
of various organs, including the heart,
lungs, muscles, sweat glands, and the
digestive tract.
Zonulin: a mammalian ortholog of
Vibrio cholerae’s Zot enterotoxin, zonulin
is released from human intestinal cells in
response to bacteria and gluten, leading
to alterations of tight junctions and
increased gut permeability. Research
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Effects of the diet on gut barrier integrity
Given that absorption of nutrients, including glucose, amino acids, and fatty acids, occurs in the
small intestine, the bulk of the gut microbiota, which resides in the colon, must rely on indigestible
dietary fiber as their main source of energy and nutrients. However, people who consume a
Western diet usually eat less than 15 g of fiber per day, in sharp contrast with the recom-
mended daily intake (25 g/day for women and 38 g/day for men) [28] or the diet of our ances-
tors (100 g/day) [29]. Following intake of a fiber-depleted, Western diet, many bacterial taxa
that normally feed on fiber gradually disappear from the gut microbiota [30], while other
commensals such as Bacteroides thetaiotaomicron shift their metabolism to degrade mucus
glycans that normally protect the intestine [31]. A low-fiber diet reduces SCFA producers in
the gut microbiota, which can affect gut barrier integrity by reducing production of mucus, an-
timicrobial proteins, and Treg cells [5], as well as affecting tight junction assembly [32]
(Figure 1C). Accordingly, the Western diet reduces mucus thickness and increases gut perme-
ability and proinflammatory markers in mice [33] (Table 1).

The Western diet also induces systemic inflammation associated with changes in bile acid syn-
thesis and signaling [34]. Bile acids are emulsifiers that affect mucus properties [35] and increase
gut permeability in intestinal cell monolayers [36] and mice [37]. Emulsifiers are also added to
processed foods to improve lipid–water mixing and food texture. Chronic intake of relatively
low amounts of emulsifiers (1% w/v) for 12 weeks is sufficient to induce gut permeability, low-
grade inflammation, and metabolic syndrome in wild-type mice and produce robust colitis in
inflammation-prone IL-10-deficient mice [38]. Emulsifiers may affect gut barrier integrity by induc-
ing gut dysbiosis and affectingmucus thickness [38]. Other food additives that can disrupt the gut
barrier and induce dysbiosis in animal models include fructose [39], salt [40], and artificial sweet-
eners [41] (Table 1).

The seminal work of Cani et al.was instrumental in elucidating a link between diet, gut barrier dys-
function, andmetabolic diseases. This group showed that feeding a high-fat diet (HFD) to mice for
4 weeks increases serum LPS levels, and subcutaneous injection of LPS is sufficient to increase
fasted glycemia, insulinemia, and body weight similar to feeding a HFD [42]. The HFD reduces
tight junction expression and induces MAMP translocation into the lamina propria, which pro-
motes inflammation via activation of TLRs on the basolateral surface of enterocytes or on immune
cells [43] (Figure 1C). In humans, analysis of a 3-day food survey shows that people who con-
sume a high-energy diet, but not a high-carbohydrate diet, have higher levels of plasma LPS
[44], a condition called endotoxemia. Diabetic subjects show signs of translocated bacteria
into the blood and treatment with probiotics can prevent this process [45]. Moreover, systemic
influx of microbial products correlates with levels of hemoglobin A1c (HbA1c), a marker of
poor glycemic control in humans [46]. Endotoxemia is also observed in subjects with non-
alcoholic fatty liver disease [47], and individuals with high endotoxemia levels have a threefold
higher risk of atherosclerosis [48].

These observations indicate that gut barrier dysfunction, dysbiosis, and inflammation induced by
poor diet affect organs connected to the gut (e.g., pancreas, liver, and blood vessels), thus con-
tributing to the development of various metabolic conditions, including type 2 diabetes, obesity,
non-alcoholic fatty liver disease, and cardiovascular disease.

The autoimmune connection
Increased gut permeability, dysbiosis, and altered mucosal immunity have also been observed in
autoimmune diseases (Figure 1D). Mice carrying a transgenic T cell receptor specific for a beta
cell autoantigen spontaneously develop gut permeability and mucus layer dysfunction, leading
Trends in Endocrinology & Metabolism, Month 2022, Vol. xx, No. xx 3

CellPress logo


suggests that plasma zonulin represents
a marker of gut permeability in asthma,
celiac disease, type 1 diabetes, multiple
sclerosis, rheumatoid arthritis,
neurological disease, and cancer.
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to increased Th17 cells, reduced Treg cells, and development of type 1 diabetes [49]. Increased
intestinal permeability also precedes type 1 diabetes onset in humans [50]. Systemic lupus
erythematosus can also be triggered by TLR7-induced gut dysfunction in various mouse models
[51]. For instance, continuous topical treatment with imiquimod, a TLR7 agonist, induces
bacterial translocation and lupus-like symptoms in wild-type mice [52]. Bacterial translocation
of Enterococcus gallinarum to lymph nodes and the liver occurs in lupus-prone mice carrying a
TLR7 gene duplication and in human lupus subjects [53]. Moreover, the human gut commensal
Prevotella histicola protects against neurodegeneration by reducing gut permeability and increas-
ing levels of Treg cells and tolerogenic dendritic cells in a murine model of multiple sclerosis [54].
Bacterial DNA of intestinal origin is found in the circulation of subjects with psoriasis [55], suggest-
ing the involvement of gut barrier dysfunction in this autoimmune condition as well. A time-course
experiment showed that increased gut permeability preceded intestinal inflammation and the
onset of arthritis in mice [56]. However, another study showed that co-transfer of splenocytes
and gut microbiota from arthritic mice is required to induce gut permeability and arthritic symp-
toms in recipient mice [57], indicating that a combination of immune and microbiota-related fac-
tors may be needed to disrupt gut barrier integrity and induce autoimmune diseases.

The Western diet may contribute to the development of autoimmune diseases in part via its ef-
fects on the gut microbiota and SCFAs. Lupus subjects are more likely to consume a low-fiber
diet [58], which may affect gut barrier integrity by reducing SCFAs, mucus, IgA, and Treg cell
levels [3,5,59] (Figure 1D). Translocation of Lactobacillus reuteri was observed in lupus-prone
mice and a subset of lupus subjects and a fiber-rich diet containing resistant starch reduced
lupus mortality in mice by increasing SCFA levels [60]. The SCFAs butyrate and acetate improved
gut barrier integrity, increased Treg cell levels, and reduced autoreactive T cells in a mouse model
of type 1 diabetes [61], supporting the use of fiber-enriched diets against autoimmune diseases.

Lifestyle and the gut barrier
Antibiotics affect microbiota composition and gut barrier integrity and their overuse has been im-
plicated in the development of various health issues (Box 1). Likewise, long-term intake of non-
steroidal anti-inflammatory drugs (NSAIDs) can induce gastroduodenal ulcers, inflammation,
and bleeding by increasing gastric acid secretion, reducing mucus production, and inducing
gut barrier leakage and endotoxemia [62] (Table 1). Another group of widely used drugs, proton
pump inhibitors, enhance alcohol-induced fatty liver disease in mice and humans by reducing
gastric acid, which increases growth of commensal bacteria in the small intestine and leads to
translocation of microbial products and liver inflammation [63]. One of the most commonly
used toxins that disrupt gut barrier integrity and the intestinal microbiota is alcohol. As such,
chronic alcohol abuse is associated with increased gut barrier leaks, gut dysbiosis, and translo-
cation of bacterial components into internal organs, which contribute to alcohol-induced health
complications even before liver disease development [64].

Psychological stress also increases gut permeability in rodents and humans (Table 1). Water-
avoidance stress increases gut permeability and affects the cohesive properties of mucin in
mice [65]. Maternal separation induces the release of corticotropin-releasing factor by the hypo-
thalamus and acetylcholine by cholinergic enteric neurons in rat pups, which results in increased
gut permeability to large proteins [66]. In humans, a public speech test increased gut permeability
in a subset of healthy subjects who had concomitant increased salivary cortisol levels [67].
Chronic stress can exacerbate symptoms in IBD patients by increasing gut permeability and in-
ducing low-grade inflammation [68,69]. Conversely, vagus nerve stimulation reduces gut
permeability and intestinal injury in mouse models of burn injury [70], indicating that stress man-
agement strategies may help to mitigate the effects of psychological stress on the gut barrier.
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Figure 2. Nutrient absorption and translocation of microbial components across intestinal cells. Hydrophobic molecules are absorbed by diffusion through the
membrane bilayer. Specific transporters for glucose and amino acids facilitate transport through enterocytes. Lipid micelles, which may contain bacterial
lipopolysaccharide and other microbe-associated molecular patterns (MAMPs), are absorbed by endocytosis. Water and small ions (<8 Å) such as sodium (Na+) can
also pass through the ‘pore’ pathway formed by claudin-2 proteins. Tight junction rearrangement in response to proinflammatory cytokines allows passage of food
antigens (Ag) and MAMPs (<100 Å) via the ‘leak’ pathway. Dendritic cells send protrusions through the paracellular pathway to sample lumen antigens. Erosion, ulcers,
and intestinal cell death can lead to unrestricted passage of whole bacteria and MAMPs into the lamina propria.
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Sleep deprivation also induces gut permeability and increases proinflammatory cytokines in mice
[71]. Night shift workers are more prone to develop various disorders, including gastric and duo-
denal ulcers [72,73], obesity, type 2 diabetes, and cardiovascular disease [74], which are associ-
ated with gut barrier dysfunction. In view of the pleiotropic effects of the circadian rhythm in
regulating physiological functions, chronic disruption of the circadian rhythm by sleep deprivation
or unrestricted, ad libitum feeding patterns has emerged as a critical factor in the development of
metabolic disease [75,76]. Accordingly, circadian rhythm disruption through genetic or environ-
mental means increases colonic permeability, endotoxemia, and hepatosteatosis in alcohol-
treated mice [77] (Table 1).

Proinflammatory cytokines produced as a result of increased gut permeability and chronic inflam-
mation may also affect the blood–brain barrier, leading to fatigue and possibly contributing to
Figure 1. Gut barrier and disease conditions. (A) The gut barrier consists of gut commensal microbes, mucus, the intestinal epithelium, and immune cells in the lamina
propria. Dendritic cells (DC) continually sample the lumen and promote proliferation of regulatory T (Treg) cells in response to commensals, therefore inducing a default state
of tolerance. DCs also stimulate B cells to secrete immunoglobulin (Ig)A, which prevents translocation of bacteria into the mucosa. Dietary fibers are converted by the gut
microbiota into short-chain fatty acids (SCFAs), which induce mucus production by goblet cells and expression of tight junctions (TJs). Paneth cells secrete antimicrobial
peptides (AMPs) in response to Toll-like receptor-2 (TLR2) signaling induced by the gut microbiota. (B) Intestinal diseases involve gut barrier disruption due to pathogens,
genes, and poor diet. (C) Metabolic diseases, including obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD) have
been linked with food additives, bile acid metabolism, low-fiber diets, and dysbiosis, which together may affect gut barrier integrity. (D) Autoimmune diseases are
associated with genetic predisposition and environmental factors that affect gut barrier integrity. (E) Mental health issues may be linked with psychological stress, poor
sleep, diet, and circadian rhythm disruption, which can affect the gut barrier, producing systemic inflammation that in turn affects the blood–brain barrier (BBB).
(F) Aging eventually leads to gut dysbiosis, exhaustion of intestinal stem cells (ISCs), and inflammaging, which may induce a vicious cycle of inflammation and gut
barrier dysfunctions. Abbreviations: IBD, inflammatory bowel disease; MAMPs, microbe-associated molecular patterns; MS, multiple sclerosis; NLRs, NOD-like
receptors; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes.
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Table 1. Stimuli that alter gut barrier integrity in model organisms or humans

Stimuli Main finding Refs

Acrolein (food
toxin)

Endoplasmic reticulum stress↑, intestinal cell death↑, gut permeability↑, and
endotoxemia↑ in mice

[158]

Aging Serum zonulin↑, proinflammatory cytokines↑, and gut permeability↑ in aging
individuals (>67 years old)

[98,159]

Alcohol Endotoxemia↑ in alcoholic cirrhotic, non-alcoholic cirrhotic and healthy
individuals after large intake

[160]

Antacid drugs Gastric acid↓, commensal bacteria↑ in the small intestine, BT, liver
inflammation, and alcohol-induced fatty liver disease in mice

[62]

Antibiotics Gut permeability↑, ZO-1↓ and occludin↓, gut dysbiosis, and inflammasome
activation in mice treated with a broad-spectrum antibiotic cocktail

[161]

Bile acids TJ rearrangement in Caco-2 cells; 10-week feeding dose-dependently
disrupted gut barrier in mice

[36,37]

Burn injury Reduced TJ protein expression and increased gut permeability in mice after
burn injury

[162]

Chemotherapy Cyclophosphamide induced BT into lymph nodes, in turn inducing
proinflammatory T helper 17 immune cells and anticancer effects in mice

[163]

Circadian rhythm
disruption

Alcohol-induced colonic permeability and endotoxemia in transgenic
clockΔ19/Δ19 mice; increased gut permeability and dysbiosis in mice
maintained in constant 24-hour light

[77,164]

Corticosteroids Daily subcutaneous injection for 10 days produced a threefold increase of
colon permeability to 400-Da PEG, but not to larger molecules, in rats

[165]

Dextran sodium
sulfate

Reduced body weight, colon length, and survival in mice [166]

Emulsifiers
(food additives)

Gut permeability↑, inflammation, obesity↑, and metabolic syndrome↑ in
wild-type mice and colitis in colitis-prone IL-10–/– and TLR-5–/– mice

[38]

Exercise
(strenuous)

Mild endotoxemia was observed after a 2–4 hour marathon; strenuous
exercise (≧2 hours) at 60% VO2 max increased gut permeability and
endotoxemia in healthy subjects and trained athletes, irrespective of fitness
status; modest endotoxemia and pronounced proinflammatory response
was observed after a 230-km ultra-marathon

[89,167,168]

Fasting/starvation Fasting for 16 hours increased endotoxemia-induced intestinal cell
apoptosis in mice; fasting for 3 days increased intestinal cell apoptosis and
gut permeability in rats; fasting for 48 hours impaired Paneth cell function,
reduced antimicrobial proteins, and induced BT in mice

[153,169,170]

Fructose Ad libitum high-fructose feeding induced diabetes and hepatosteatosis in
monkeys, while calorically controlled high-fructose feeding induced
endotoxemia, microbial translocation, and liver injury; TJ proteins↓,
endotoxemia, inflammation, and hepatosteatosis in rats; TJ proteins↓ and
liver inflammation in biopsies of obese humans

[39,171]

Fructan Induced more gastrointestinal symptoms than gluten in individuals with
non-celiac gluten sensitivity

[172]

Gliadin
(wheat protein)

Permeability↑ in human biopsy explants from all individuals following
treatment with gliadin, but more so in explants from subjects with active
celiac disease and non-celiac gluten sensitivity

[173]

Heat Splanchnic blood flow↓ and portal endotoxemia↑ in rats exposed to 41.5°C [174]

High-fat diet Dysbiosis, mucus thickness↓, and inflammation in mice fed a HFD for
12 weeks; endotoxemia↑ in healthy subjects fed a HFD for 1 month;
endotoxemia↑ in healthy subjects fed a HFD for 5 days

[33,175,176]

High-salt diet Chronic salt feeding (2% NaCl) for 8 weeks induced BT and kidney injury in
mice

[40]

High-sugar diet Gut mucolytic bacteria↑, BT, SCFAs↓, inflammation, and severe
DSS-induced colitis in mice

[23,177]

(continued on next page)
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Table 1. (continued)

Stimuli Main finding Refs

Hyperglycemia Gut permeability↑, systemic TLR ligands↑, and susceptibility to infection↑ in
streptozotocin-treated mice

[46]

Hypoxia Long-term gut tissue hypoxia reduced gut TJs in mice and increased blood
bacterial DNA in some patients (31%)

[145]

Lectins Endotoxemia↑ and BT in rats fed a diet of 26% crude red kidney beans for
24 hours

[178]

Leptin deficiency Gut permeability↑, systemic TLR ligands↑, and susceptibility to infection↑ in
db/db obese mice

[46]

Low-fiber diet Mucus thickness↓, inflammation↑, and colitis↑ in gnotobiotic mice harboring
a human gut microbiota and inoculated with Citrobacter rodentium

[143]

Nightshade
alkaloids

Solanine and chaconine disrupted gut barrier integrity and aggravated IBD
in colitis-prone IL-10–/– mice

[179]

NSAIDs Intestinal permeability↑ and inflammation in subjects on long-term NSAID
treatment

[180]

Parenteral
nutrition

Gut permeability↑ and BT to lymph nodes in 70–90% of rats fed parenterally
for 7 or 14 days; no obvious mucosal changes in human intestinal biopsies
after 1 month of total parenteral feeding

[152,155,181]

Pesticide Chlorpyrifos induced BT to the spleen in weaning and adult rats [182]

Phytochemicals Plant extracts of hops and marigold increased permeability of human
intestinal Caco-2 cell monolayers

[183]

Proinflammatory
cytokines

IL-1β induced gut permeability and dissemination of IgA in cardiovascular
tissues in a mouse model of Kawasaki disease; TNF-α induced occludin
endocytosis, gut barrier loss, and diarrhea in mice

[184,185]

Psychological
stress

A public speech test increased gut permeability via activation of mast cells in
some healthy volunteers; maternal separation induced gut permeability and
BT to the liver and spleen in rat pups; water avoidance stress increased gut
permeability and reduced mucin layer’s cohesive properties in rats

[66–67,186]

Radiation Severe gastrointestinal damage, BT, sepsis, and death in γ-irradiated mice [187,188]

Rapamycin Gut permeability↑, inflammation↑, and mortality↑ in a mouse model of
ischemia-reperfusion injury

[189]

Sleep deprivation Plasma melatonin↓, gut permeability↑, dysbiosis, oxidative stress↑, and
proinflammatory cytokines↑ in mice

[71]

Smoking Chronic smoking induced BT, gut permeability, TJ alteration, and
inflammation in mice

[190,191]

Stroke Gut permeability↑ and BT to multiple organs in mice and humans following
stroke

[192]

Sweeteners Permeability↑ of human intestinal Caco-2 cell monolayers by reducing
claudin-3

[41]

Trauma/surgery Gut permeability↑ and TNF-α↑ in mice following traumatic brain injury; BT in
15% of surgical patients

[193,194]

Vitamin C Increased gut permeability to lactulose more than aspirin in healthy female
volunteers

[195]

Abbreviations: BT, bacterial translocation; HFD, high-fat diet; IBD, inflammatory bowel disease; Ig, immunoglobulin; IL,
interleukin; NSAID, non-steroidal anti-inflammatory drug; PEG, polyethylene glycol; TJ, tight junction; TLR, Toll-like receptor;
TNF-α, tumor-necrosis factor-alpha; VO2 max, maximum volume of oxygen; ZO, zonula occludens.
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behavioral disorders and depression [78,79] (Figure 1E). Increased anti-LPS antibodies have
been observed in subjects with major depressive disorder [80,81]. Endotoxemia and proinflam-
matory cytokines induce sickness behavior, which includes fatigue, anxiety, and depressive
8 Trends in Endocrinology & Metabolism, Month 2022, Vol. xx, No. xx
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Box 1. From killing the bad to fostering the good

While antibiotics remain important tools for treating infections, evidence suggests that their overuse in the last 50 years has
produced many detrimental effects on the human gut microbiota [129]. Many bacterial species that are depleted by
antibiotics return after treatment, but some species are lost indefinitely [130]. Recovery of the gut microbiota following
antibiotic treatment is slow and inefficient in mice consuming a fiber-depleted diet [131], demonstrating that the gut
microbiota requires dietary fiber to thrive. Antibiotic treatment affects gut microbiota diversity, which can reduce resistance
to colonization by pathogens [6]. For instance, antibiotics such as clindamycin, fluoroquinolones, and cephalosporins
increase the risk of infection by the opportunistic pathogen Clostridium difficile [132].

Depletion of commensals can also have long-lasting systemic effects. For instance, antibiotics used in the first year of
childhood increase the risk of developing asthma and other allergies such as hay fever and eczema in children [133]. Early
antibiotic use is also associated with increased body weight and is possibly a culprit in emergence of the obesity epidemic
[134]. Similarly, zealous use of alcohol-containing mouth washes depletes mouth bacteria that produce nitric oxide, which
increases the risk of type 2 diabetes [135] and hypertension [136], possibly due to reduced nitric oxide bioavailability.

Moreover, gut barrier integrity and the microbiota are intimately linked. Transgenic mice that express intestinal-specific,
constitutively activemyosin light chain kinase (MLCK), an enzyme that induces gut permeability by altering the cytoskeleton
and tight junctions, show low-grade gut inflammation and dysbiosis [137]. Conversely, gut microbiota composition
changes produced by housing two mouse colonies in different rooms of the same specific pathogen-free facility can also
impair the colonic mucus layer and gut barrier integrity [138]. These observations suggest that the gut barrier and micro-
biota are involved in a crosstalk that is pivotal for maintaining health.

A large epidemiological study that examined nearly 70 000 diabetic subjects in Northern Denmark showed that hypergly-
cemia is strongly associated with community and hospital-acquired infections [139]. The severity of coronavirus disease
2019 (COVID-19) symptoms has also been associated with increased gut permeability, [140] suggesting that gut
barrier integrity may represent a marker for the progression of infectious diseases. The factors that affect the gut
barrier–microbiota relationship, including underlying conditions such as diabetes and aging, may be involved in the devel-
opment of infectious diseases. Therefore, treating a metabolic condition or an infection without consideration of gut barrier
integrity and dysbiosis is unlikely to provide a stable long-lasting cure.
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symptoms [79]. Gut barrier dysfunction and dysbiosis have been linked to other mental health is-
sues such as chronic fatigue syndrome [82], schizophrenia [83], suicide [84], and autism [85], al-
though the mechanisms remain to be examined in more detail. While mental health disorders are
multifactorial in nature, gut barrier defects may represent a contributing factor in some individuals.

Exercise can also affect gut barrier integrity (Table 1). Strenuous exercise for more than 2 hours at
60% VO2 max appears to be the threshold above which increased gut permeability and
endotoxemia are observed in healthy subjects and trained athletes, irrespective of fitness status
[86]. These effects may be attributed to stress hormones and increased heat, which induces a
redistribution of blood flow to the periphery to dissipate heat, thereby reducing blood flow and
oxygen levels in the gastrointestinal tract [87]. However, swimming at moderate intensity
improved gut barrier integrity in rodents [88], implying the occurrence of biphasic hormesis
responses (Box 2).

Do poor diet and lifestyle habits that increase gut permeability, such as a low-fiber diet and psy-
chological stress, necessarily lead to autoimmune, metabolic, and cognitive disorders? Obviously
not (Box 2). However, it is likely that chronic ruptures of the gut barrier, as may occur in individuals
with a modern lifestyle, may overwhelm the body’s defenses and contribute to inflammation and
disease development, especially in aging individuals.

When the fence grows old
Major changes occur in the gut during aging, including increased intestinal cell apoptosis, re-
ducedmucus thickness and antimicrobial peptides, intestinal stem cell exhaustion, and dysbiosis
[89–92] (Figure 1F). The term ‘inflammaging’ has been used to describe the association between
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Box 2. Leaky gut as the cause of all diseases? Not so fast…

Gut barrier defects have been associated with a surprisingly large number of diseases, from cardiovascular disease [141]
and cancer [142], to autism [85] and even COVID-19 [140]. But can gut barrier disruption be blamed for such a broad
spectrum of diseases?

Feeding mice with a low-fiber diet transiently increases mucus production to offset barrier dysfunction, whereas prolonged
feeding induces a breach in intestinal integrity [143]. Mice treated with microbial toxin from Vibrio cholerae present a transient
gut barrier breach that enhances their resistance to subsequent colitis [144]. Similarly, brief stress, such as hypoxia applied
for a short period, results in fortified tight junctions and improved gut barrier integrity, whereas prolonged hypoxia damages
barrier function [145]. Clearly, transient and low-intensity stress can be beneficial, while chronic and acute stress is detrimental,
a biphasic dose response called hormesis. Hormetic responses are observed for various physiological functions in response to
stress, ranging from exercise and intermittent fasting to consumption of drugs and phytochemicals [146–150].

Studies also indicate that the human gastrointestinal tract is more robust than the murine one. Feeding rodents with a total
liquid diet containing no fiber, enterally or parenterally, for 7 or 14 days, induces bacterial translocation to internal organs
[151,152]. Similarly, fasting for 3 days increases the gut permeability and endotoxemia in rodents [153], possibly due to
reduced nutrient supply to intestinal cells and reduced mucus production. In humans, total parenteral nutrition also in-
duces gut barrier dysfunction in critically ill patients [154] and bacterial translocation occurs in abdominal surgery, trauma,
ischemia-reperfusion injury, and pancreatitis [155], but parenteral nutrition for 1 month apparently does not lead to
bacterial translocation or dramatic mucosal changes in immunocompetent individuals [155]. Findings from rodent studies
therefore need to be confirmed in humans.

Bacterial translocation does occur in humans following surgery, burn injury, or stroke (Table 1), which can lead to sepsis
[155], but MAMP translocation does not necessarily induce symptoms of sepsis or fever in humans [145], possibly due
to normal immune functions. In vitro models indicate that ulceration or erosion of epithelial cell monolayers is resealed
within a minute of injury [156]. In the human body, the intestinal epithelium is renewed every 3–5 days due to stem cell pro-
liferation, which helps to remove infected or damaged cells [157]. Disease may therefore develop only when the body’s
defenses are overwhelmed, which may occur in genetically susceptible and aging individuals, or in individuals exposed
to a high and prolonged stress burden, a possibility that requires further investigation.
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aging and chronic, low-grade inflammation [93,94]. For instance, serum levels of zonulin and
HMGB1 (a nuclear protein whose extracellular form is known to induce inflammation) increase
in healthy, old individuals compared with young subjects [95]. Germ-free mice fail to show an
aging-dependent increase in inflammatory mediators and an aging-dependent increase in gut
permeability and proinflammatory cytokines can be transferred to germ-free mice that are co-
housed with aged, but not young, mice [96]. These data suggest that gut dysbiosis observed
during aging promotes gut permeability and inflammation. While proinflammatory cytokines
initially act to contain microbial infection and promote tissue regeneration following injury or infec-
tion [97], these molecules may accumulate in aging individuals, producing a vicious cycle of gut
barrier loss and chronic inflammation [98].

Research even suggests that increased gut permeability may be a critical event leading to death
from ‘natural cause’. InDrosophila, in which gut permeability can be observed as accumulation of
a blue dye throughout the body following feeding (thus creating blue flies called ‘Smurfs’), gut per-
meability has been found to be more accurate than chronological age for predicting the time of
death [99]. Aging-induced gut permeability is also observed in nematodes and zebrafish and it in-
creases quasi linearly with age, occurring in all individuals prior to death, regardless of chronolog-
ical age [100]. Notably, increased gut permeability is observed in critically ill patients prior to
multiple organ failure [101]. In addition to the gut, increased epithelial and endothelial permeability
in the kidneys, lungs, and the liver is observed in critically ill patients [102], indicating that loss of
integrity in various barriers may contribute to the demise of the human body.

Interventions to maintain gut barrier integrity
Many interventions can improve gut barrier integrity in human and animal studies (Table 2).
Arguably, one of the main strategies to improve health is the reintroduction of dietary fiber in
10 Trends in Endocrinology & Metabolism, Month 2022, Vol. xx, No. xx
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Table 2. Interventions that maintain or restore gut barrier integrity in model organisms or humans

Intervention Main finding Refs

Alkaline
phosphatase

Oral treatment reduced alcohol-induced endotoxemia, gut barrier
dysfunction, and hepatosteatosis in mice

[124]

Amuc 1100 This A. muciniphila protein reduced fat mass, endotoxemia, and
insulin resistance in HFD-fed mice

[120]

Berberine Reduced TNF-α-induced disruption of TJs and gut barrier in rat
colon

[196]

Butyrate Bacterial translocation↓ across human intestinal cell monolayers
in vitro; gut permeability↓ and onset of arthritis↓ in mice

[56,197]

Caloric restriction 4 weeks of 800 kcal/day reduced gut permeability, body weight,
and insulin resistance in obese women

[125]

CB1R agonists Gut permeability↓ and onset of arthritis↓ in mice; permeability↓ and
ZO-1↑ in C. difficile-treated Caco-2 cells

[56,198]

Curcumin LPS-induced MLCK levels↓ in human intestinal cell monolayers
in vitro; gut permeability↓, endotoxemia↓, weight gain↓, and liver
steatosis↓ in ApoE–/– mice

[106,199]

Dietary fiber Zonulin↓, serum hepatic enzymes↓, insulin resistance↓, and fatty
liver index score in NAFLD subjects; mucus secretion↑ in gut of
rats

[104,200]

Divertin Reversed gut barrier loss in human jejunal mucosae ex vivo and IBD
development in mice

[185]

Exercise (moderate) Swimming increased TJ gene expression in the small intestine of
rats, but reduced expression in the colon

[88]

Fasting Early-life IF using the 2:5 diet for 1 month improved late-life gut
integrity and longevity in flies; IF improved gut barrier integrity,
endotoxemia, and diabetes-induced cognitive impairment in mice;
fasting reduced gut permeability in arthritis subjects

[201–203]

Fasting-mimicking
diet

Intestinal stem cells↑, gut dysbiosis↓, inflammation↓, and
pathological scores↓ in the DSS-colitis model in mice

[127]

Fecal microbiota
transplantation

Small intestinal permeability↓ in NAFLD subjects with initially high
permeability

[204]

Fermented food BT↓, gut permeability↓, dysbiosis↓, and proinflammatory cytokines↓
in DSS-induced colitis in mice treated with a mixture of fermented
barley and soybean

[205]

Fish oil Gut permeability↓, antimicrobial defense↑, mucus components↑,
and insulin resistance↓ in HFD-fed mice

[206]

Gelatin tannate Increased mucus and reduced disease severity and blood LPS in
the mouse model of DSS-induced colitis

[207]

Ganoderma lucidum
polysaccharides

Reduced gut permeability, dysbiosis, endotoxemia, obesity, and
insulin resistance in HFD-fed mice

[208]

GLP-2 Reduced gut permeability to 4-kDa FITC in enteritis-suffering mice
induced by irinotecan

[209]

Glutamine Reduced gut permeability, endotoxemia, and inflammation in
abdominal postoperative patients; reduced gut permeability in
malnourished children

[210,211]

Hirsutella sinensis
polysaccharides

Reduced gut permeability, dysbiosis, endotoxemia, inflammation,
and type 2 diabetes in HFD-fed mice

[118]

Hydrogen (H2) Reduced gut permeability, BT, inflammation, and dysbiosis in a
murine model of sepsis

[212]

Infrared light Abdominal irradiation reduced inflammation, amyloidosis,
dysbiosis, and cognitive dysfunctions in a murine model of
Alzheimer’s disease

[213]

(continued on next page)

Trends in Endocrinology &Metabolism

Trends in Endocrinology & Metabolism, Month 2022, Vol. xx, No. xx 11

CellPress logo


Table 2. (continued)

Intervention Main finding Refs

Larazotide (zonulin
inhibitor; AT1001)

Reduced gut permeability in DSS-treated mice; reduced morbidity
and mortality in transgenic Hp2 mice; reduced gut permeability and
onset of arthritis in mice

[56,214]

Lubiprostone Reduced gut permeability, inflammation, and atherosclerotic lesions
in ApoE–/– mice red a Western diet; reduced diclofenac-induced gut
permeability in healthy volunteers

[215,216]

Mesalamine Gut permeability↓, TJs↑, and inflammation↓ in mice exposed to burn
injury; wound healing in colon cells

[217,218]

ML-9
(MLCK inhibitor)

Reduced TJ alterations, gut permeability, and mucosa injury in mice
following burn injury

[162]

Nicotinamide
riboside

Rejuvenated intestinal stem cells and improved repair of gut damage [219]

Nicotine Gut permeability↓, occludin↑, ZO-1↑, and gut injury↓ induced by
burn injury in mice

[220]

Quercetin Transepithelial electrical resistance↑ and claudin-4↑ in human
intestinal Caco-2 cell monolayers

[221]

Probiotics Reduced gut permeability, endotoxemia, obesity, inflammation, and
insulin resistance in HFD-fed mice; reduced symptoms in patients
with IBS, C. difficile infection, or antibiotic-associated diarrhea;
failure to improve outcome against anxiety or in children with
gastroenteritis

[112,115–118,120]

Rebamipide Reduced diclofenac-induced gut permeability in mice [222]

Resveratrol Restored TJ protein expression and reduced LPS-binding protein
and inflammation in DSS-treated colitic mice

[107]

Spermidine Gut barrier function↑, dysbiosis↓, endotoxemia↓, body weight↓, and
insulin resistance↓ in HFD-fed mice

[223]

Time-restricted
feeding

Intestinal TJ↑, inflammation↓, and protection against
ischemia-reperfusion-induced injury in mice

[128]

Tofacitinib Reduced IFN-γ-induced permeability in human intestinal cell lines
and primary colonoids

[224]

TNF-α antibody Gut permeability↓ assessed by lactulose/mannitol ratio in subjects
with Crohn’s disease 7 days after treatment

[122]

Urolithin A Intestinal TJ↑ and Nrf2↑ in intestinal cells; gut permeability↓,
systemic inflammation↓, and colitis↓ in mice

[108]

Vagus nerve
stimulation

Reduced gut permeability to 4-kDa FITC-dextran and TNF-α levels,
prevented changes in occludin expression and localization, and
improved gut histology in a mouse model of burn injury

[70,225]

Vasoactive intestinal
peptide

Reduced Citrobacter rodentium-induced gut permeability and colitis
in mice

[226]

Vitamin D Increased susceptibility to DSS-induced colitis in vitamin D
receptor-deficient mice; vitamin D supplementation maintained gut
barrier integrity in a double-blind RCT in Crohn’s disease subjects,
compared with controls; abrogated bacterial translocation in
DSS-induced colitis in mice

[237–229]

Yogurt Gut permeability↓ assessed by lactulose/mannitol ratio in a rat
model of methotrexate-induced mucositis

[230]

Zinc Gut permeability↓ to macromolecules and bacterial translocation↓ in
α-hemolysin-producing Escherichia coli-treated mice

[231]

Abbreviations: ApoE, apolipoprotein E; BT, bacterial translocation; CB1R, cannabinoid receptor type 1; DSS, dextran sodium
sulfate; FITC, fluorescein isothiocyanate; GLP-2, glucagon-like peptide-2; HFD, high-fat diet; IBD, inflammatory bowel
disease; IBS, irritable bowel syndrome; IF, intermittent fasting; IFN-γ, interferon-gamma; Ig, immunoglobulin; IL, interleukin;
LPS, lipopolysaccharide; MLCK, myosin light chain kinase; NAFLD, non-alcoholic fatty liver disease; RCT, randomized
controlled trial; TJ, tight junction; TLR, Toll-like receptor; TNF-α, tumor-necrosis factor-alpha; ZO, zonula occludens.
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the Western diet [103]. For example, adding 10 g of fiber per day for 6 months reduced serum
zonulin, insulin resistance, and serum liver enzymes and improved fatty liver score in non-
alcoholic fatty liver disease subjects [104]. Given that human subjects show notoriously poor
compliance with dietary modifications, dietary fiber supplements may be a viable option for
these patients.

Many phytochemicals such as berberine, curcumin, quercetin, and resveratrol improve gut bar-
rier integrity and reduce inflammation in animal models (Table 2). While these phytochemicals
show poor bioavailability, we suggested earlier that they may produce beneficial effects by serv-
ing as prebiotics and biological stress inducers [105]. Phytochemicals may thus reduce inflamma-
tion by fortifying the gut barrier and preventing the translocation of microbial components, as
shown in recent studies for curcumin [106], resveratrol [107], and urolithin A [108] in mice and cul-
tured cells. Conversely, phytochemicals from hops, chili pepper, and marigold may instead in-
crease gut permeability [109] and a diet deficient in specific phytochemicals and lectins may be
highly beneficial in individuals who show signs of inflammation [110].

In addition to maintaining gut barrier integrity by inducing the production of mucus, antimicrobial
proteins, IgA, and Treg cells (Figure 1), commensals can reinforce the gut epithelium by promoting
tightening of intestinal cellular junctions [111]. First-generation probiotics such as Lactobacillus and
Bifidobacterium stimulate resistance against gastrointestinal diseases, enteric infection, antibiotic-
induced diarrhea, depression, and anxiety [112–114]; however, negative results were also ob-
tained, for instance, against anxiety [115] or gastroenteritis [116,117], possibly due to variations
in diet, lifestyle, and gut microbiota composition.

Second-generation probiotics such as Akkermansia muciniphila, Roseburia spp., and
Parabacteroides spp. are currently being studied to improve gut homeostasis. Our group
observed that Parabacteroides goldsteinii reduced gut permeability, serum endotoxemia, body
weight gain, insulin resistance, and inflammation in HFD-fed mice [118]. In humans, supplemen-
tation with heat-killed A. muciniphila for 3 months reduced serum endotoxemia, slightly
decreased body weight and fat mass, and improved insulin sensitivity in overweight and obese
volunteers [119]. A membrane protein (i.e., Amuc 1100) from A. muciniphila may be responsible
for these benefits as it reduced signs of obesity and diabetes and improved gut barrier integrity in
mice, possibly by inducing TLR2 signaling [120].

Corticosteroids, anakinra (IL-1 receptor antagonist), and anti-TNF-α antibodies can reduce in-
flammation and improve gut barrier integrity in IBD subjects [121,122]. Glutamine reduced intes-
tinal permeability and improved inflammatory bowel syndrome severity scores in a randomized
placebo-controlled clinical trial of patients following enteric infection [123]. In a mouse model of
arthritis, treatment with butyrate, cannabinoid type 1 receptor agonists, or larazotide (a zonulin
antagonist) reduced gut permeability and arthritis symptoms [56]. Notably, larazotide is currently
in Phase III clinical trials for the treatment of celiac disease. In addition, oral supplementation with
alkaline phosphatase, which can dephosphorylate and inactivate LPS, can reduce endotoxemia,
gut barrier dysfunction and liver damage induced by alcohol in mice [124].

Caloric restriction, the fasting-mimicking diet, and time-restricted feeding can also produce ben-
efits for the gut (Table 2). A 4-week caloric restriction diet (800 kcal/day) reduces gut permeability,
body weight, insulin resistance, and inflammation markers in obese women [125]. The fasting-
mimicking diet, which involves consuming a low-protein, low-calorie diet (800 kcal/day) for 4 or
5 consecutive days per month, reduces markers of aging, diabetes, cancer, and cardiovascular
disease in humans [126]. The fasting-mimicking diet increased intestinal stem cells and reversed
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Outstanding questions
What is the role of gut barrier disruption
in diseases such as autism, cancer,
schizophrenia, multiple sclerosis, and
COVID-19?

Can dietary fiber supplementation and
fiber-enriched food help to prevent
or treat metabolic, autoimmune, and
cognitive disorders?

Can lifestyle interventions involving
changes in diet and exercise, alcohol
and antibiotic use, sunlight
exposure, and stress management
improve conditions associated with
increased gut permeability?

Can transient low-intensity stress such
as intermittent fasting, moderate exer-
cise, and specific phytochemicals be
used to improve gut barrier integrity
via hormesis?

What is the role of gut barrier disruption
in inflammaging in humans?

Can aging be delayed by treatments
aimed at maintaining or restoring
gut barrier integrity, such as fiber,
probiotics, phytochemicals, vitamin
D, and targeted drugs?
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dysbiosis, inflammation, and pathological scores in the mouse model of DSS-induced colitis
[127]. Time-restricted feeding in which food is consumed within 4–8 hours (during daytime for
humans or nightime for rodents) also reduces gut barrier disruption and ischemia-reperfusion in-
jury in mice [128].

An interesting strategy to improve gut homeostasis and reduce inflammation consists of combin-
ing nonpersonalized interventions centered around limiting the inappropriate use of antibiotics
coupled with personalized interventions involving consumption of plant-based, high-fiber
foods, engineered fiber-enriched foods, prebiotics supplementation, and reintroduction of volatile
and/or associated negatively with industrialized societies of humans (VANISH) taxa in the gut
microbiota [103].

Concluding remarks and future perspectives
Multiple factors involving poor diet and lifestyle habits affect gut barrier function and the compo-
sition of the gut microbiota. These factors play a role in the development of intestinal diseases as
well as metabolic, autoimmune, and mental disorders involving inflammation. Many promising
therapies have been tested in animal models and require confirmation in clinical trials (see
Outstanding questions). However, treatments such as probiotics or pharmaceutical drugs
aimed at restoring gut barrier integrity are likely to fail when taken in isolation. Instead, we believe
that lifestyle changes involving consideration of diet composition, pharmaceutical drug and alco-
hol use, exercise, sunlight exposure and vitamin D levels, circadian rhythm regulation, and stress
management are more likely to show positive results. Recent advances related to gut barrier
integrity and gutmicrobiota composition therefore offer the opportunity to reassess the importance
of the diet and lifestyle in the prevention and treatment of chronic diseases associated with gut bar-
rier disruption, inflammation, and aging.
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